Lecture 1: Ischemic Heart Disease (IHD)

◆ Page 1: General Overview & Coronary Physiology

General Characteristics

1. Heart Anatomy

- Size: Approximately the size of a closed fist.
- Average heart rate: ~70 beats per minute.
- Average blood pumped: 6–7.5 liters per day.
- 2. Coronary Artery ECG Leads
- Anterior leads: V1−V4 → ∠AD
- Inferior leads: II, III, aVF RCA
- Lateral leads: V5, V6, aVL, lead I
- 3. Coronary Circulation Physiology
- Flow at rest: ~60–90 mL/min/100 g tissue
- D not by more

LD Since in Systole, Contraction Would puts more pressure

- Oxygen extraction: ~65–75% (already near max → compensation must occur by ↑ blood flow) ^{O2} extraction
 80% of coronary perfusion occurs during diastole (In contrast to most other organs where it occurs during systole)
- Collateral vessels:
- Anatomically present but usually non-functional unless activated by ischemia.

• **Clinical Pearl**: A patient with prior angina is more likely to have developed collateral circulation \rightarrow better outcomes in on the vessels MI than someone with a first-time event.

Physiology of Coronary Circulation

Normal Myocardial Oxygen Dynamics

Myocardial O₂ Demand	Myocardial O₂ Supply
1. Heart rate	1. Coronary flow (vessel patency)
2. Contractility	2. Hemoglobin level
3. Wall tension	3. Oxygen extraction
4. Muscle mass (wall thickness)	4. Arterial oxygen saturation

Causes of Myocardial Ischemia

Reduced Oxygen Supply

- 1. Coronary artery disease (atherosclerosis or non-atherosclerotic)
- 2. Decreased oxygen content in blood:
- Severe anemia
- Carboxyhemoglobinemia (e.g., CO poisoning)
- Hypotension
- Increased Oxygen Demand
- 1. Left Ventricular Hypertrophy
- Due to hypertension, aortic stenosis, hypertrophic cardiomyopathy
- 2. Increased Cardiac Output
- Conditions such as thyrotoxicosis, rapid tachyarrhythmias

Causes of Coronary Artery Disease (CAD)

Atherosclerotic (95%)

Non-Atherosclerotic Causes

- 1. Arteritis: e.g., SLE, RA, Takayasu arteritis
- 2. Embolism
- 3. Mural thickening: e.g., amyloidosis, post-radiation fibrosis
- 4. Luminal narrowing: spasm or aortic dissection
- 5. Congenital anomalies

Local Context: CAD in Jordan

- 98% of the population have at least 1 modifiable risk factor.
- Most people have ≥3 risk factors.
- Risk is exponential, not additive: Multiplibite
- Hypertension = 3× risk of CAD
- High LDL = 4× risk
- Together = 12× risk

Pathogenesis of Atherosclerotic Plaques

Step-by-Step Pathogenesis

- 1. Endothelial Injury (Dysfunction)
- Caused by hypertension, smoking, diabetes, hyperlipidemia, etc.
- Leads to loss of nitric oxide (vasodilator), increased permeability, and pro-inflammatory state.
- 2. Protective Response
- Activated endothelium expresses cell adhesion molecules:
- **Cytokines**: IL-1, TNF-α
- Chemokines: MCP-1, IL-8
- Growth Factors: PDGF, FGF
- These attract T-cells and monocytes and promote smooth muscle proliferation.
- 3. Monocyte and T-cell Recruitment
- These immune cells adhere to the sticky surface of activated endothelium.
- 4. Migration to Subendothelial Space
- Monocytes penetrate the intima and mature into macrophages.
- 5. Lipid Uptake
- Macrophages engulf oxidized LDL → become **foam cells**.
- 6. Formation of Fatty Streaks
- Clusters of foam cells accumulate \rightarrow earliest visible lesion in atherosclerosis.
- 7. **Progression to Plaque**
- Foam cells + lipid pools + migrating smooth muscle cells form a fibrous plaque.

Plaque Types: Stable vs. Unstable

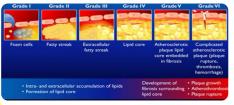
Stable Plaque	Unstable Plaque
1. More smooth muscle cells	1. More inflammatory cells
2. Fewer inflammatory cells	2. Fewer smooth muscle cells
3. Thick fibrous cap	3. Thin fibrous cap
4. Small lipid pool	4. Large lipid pool

 \bigcirc Unstable plaques are prone to rupture, causing thrombosis \rightarrow MI or ACS.

Clinical Note:

"Atherosclerosis begins early in life, but by the time the patient becomes symptomatic, it is often already advanced."

Screening and primary prevention (controlling BP, lipids, etc.) is so critical even in asymptomatic patients.


Clinical Manifestations of Atherosclerosis

Varies by artery affected:

- 1. Coronary Arteries
- Asymptomatic \rightarrow Stable angina \rightarrow Unstable angina \rightarrow MI \rightarrow CHF \rightarrow Arrhythmia \rightarrow Sudden cardiac death
- 2. Cerebrovascular Arteries
- TIA, ischemic stroke
- 3. Peripheral Arteries
- Claudication, gangrene, cold/painful feet, impotence (e.g., Leriche syndrome)

💙 Stable Angina

"Fixed plaque narrowing a major coronary artery \rightarrow mismatch between oxygen demand and supply" — \rightarrow Mainly $4 O_2$ demanel

🖗 Clinical Features:

- Chest pain:
- Retrosternal, pressure-like, heaviness
- Gradual onset
- Triggered by exertion, stress, or drugs (e.g., cocaine, methamphetamines)
- Duration: <30 min (usually 5–10 minutes)
- Relieved by rest or sublingual nitroglycerin
- May radiate to left arm, jaw, or neck
- Rare in HIV or unrelated systemic disease

 ϕ Pain pattern is predictable. If it occurs at rest or gets worse \rightarrow it's no longer "stable" \rightarrow likely unstable angina or variant.

Classification & Diagnosis of Angina

Angina Classification (Canadian Cardiovascular Society – same as NYHA for dyspnea)

Class	Description
1	No symptoms with ordinary activity
П	Symptoms with more than ordinary exertion
III	Symptoms with less than ordinary exertion
IV	Symptoms at rest

Used to grade severity and functional limitation of angina. Class III and IV are considered high risk.

Causes of Angina (Not all ischemia is coronary!)

- 1. **Coronary artery disease (CAD)** most common
- 2. Severe anemia \downarrow O₂ delivery
- 3. Hypertrophic cardiomyopathy (HCM) impaired diastolic filling, increased O₂ demand
- 4. Hypertension (HTN) ↑ afterload
- 5. **Aortic stenosis (AS)** \downarrow perfusion, \uparrow LV work
- 6. **Rapid tachyarrhythmia** \uparrow demand, \downarrow filling time

🖓 Diagnosis of Stable Angina

Step 1: History

Clinical diagnosis based on characteristic chest pain pattern.

Step 2: Physical Examination

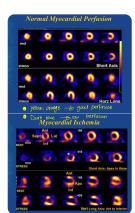
Often **normal** unless angina is complicated by HF or valvular disease.

Step 3: Resting ECG

- Often normal because stable angina is exertional
- But: Pathologic Q wave may be present → suggests previous MI

 \bigcirc Q wave = old infarction marker, especially if seen in ≥ 2 contiguous leads

Step 4: Stress Testing


Туре	What to look for
A. Stress ECG	Done before, during, after exercise
	Positive if you see ST depression
	Perform cardiac catheterization
Clinical Note	Patients with:

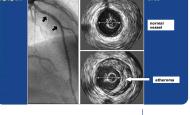
- LBBB
- LV hypertrophy
- Baseline ST abnormalities Should not undergo stress ECG, because interpretation is unreliable

B. Stress Echo (with exercise or dobutamine)

- Looks for wall motion abnormalities:
- Akinesis or hypokinesis during stress
- More sensitive than ECG
- Also shows LV function and size

C. Nuclear Imaging (e.g., thallium, dipyridamole scan)

- Looks for decreased isotope uptake during stress
- High sensitivity
- Useful when other tests are equivocal


Step 5: Laboratory Workup

- Serum lipids: LDL, HDL, triglycerides
- Fasting glucose
- CBC (anemia can mimic angina)

Step 6: Coronary Angiography

Definitive test for CAD Direct visualization of coronary vessels Indicated if:

- Symptoms are moderate/severe
- Stress test is positive
- Revascularization is being considered

we have LAD involvement and 80%. EF we

God pr-

Imaging for Atherosclerosis

Invasive	Non-Invasive
Coronary angiography	MRI, CT angiography
Intravascular ultrasound (IVUS)	B-mode ultrasound
Atheroma is considered significant if vessel narrowing is > 3.0 mm .	

Clinical Tips:

- Normal tests do NOT rule out stable angina. You need provocative testing to unmask exertional ischemia.
- Always assess the **functional impact** and decide on risk stratification and possible revascularization.

Diagnostics & Prognosis + Beginning of Management

Nuclear Perfusion Imaging

(Top left panel: "Normal Myocardial Perfusion")

What you're seeing:

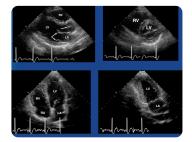
- Short axis + long axis views
- Images during rest and stress
- Yellow/orange areas = good perfusion
- Dark blue/purple = poor perfusion = ischemia

Clinical Pearl:

This is one of the most sensitive non-invasive tools for detecting **reversible ischemia** - i.e., perfusion is fine at rest but drops during exertion.

W Prognosis of CAD

Factors that determine risk:


Ejection Fraction (EF)	Vessel Involvement	Prognosis
Normal EF = 60–75%	Single-vessel disease	Good prognosis
↓ EF (<50%)	LAD or multi-vessel	Poorer outcome
Involves LAD	2–3 vessels	High-risk → often consider CABG

LAD = the "widowmaker" if proximal.

Echocardiography Findings

(Top middle panel: 4 ultrasound views)

- Shows RV, LV, LA, RA chambers
- Assesses:
- Wall motion
- LV size
- EF
- Diastolic function
- Valvular abnormalities

* Questions ; if

would still have

Management of Stable Angina

1. Risk Factor Modification

(Always first step unless unstable)

- Smoking cessation (benefits within 1 year)
- Control comorbidities: DM, HTN, lipids
- Weight loss
- Aerobic exercise improves functional capacity and symptoms

2. Medical Therapy

A. Stations that Improve Mortality:

- 1. Aspirin
- Antiplatelet; reduces thrombotic events (inewrsible inhibition of COXY which inhibits TAX2) •
- 2. Statins
- Stabilize plagues, reduce LDL, improve endothelial function •
- 3. **ACE inhibitors**
- Especially beneficial in patients with DM, HTN, or low EF •

B. Nedications for Symptom Relief:

- 1. **β-blockers**
- \downarrow HR, \downarrow BP, \downarrow myocardial O₂ demand ٠
- Can be taken before exertion to prevent angina ٠
- Nitrates not B-blocker 2. Nitrates
- Vasodilate \rightarrow reduce preload \rightarrow lower O₂ demand •
- Fast acting (sublingual) or long-acting (patch, oral)
- 3. **CCBs (Calcium Channel Blockers)**
- \downarrow contractility and afterload
- Often used if beta-blockers contraindicated or ineffective

Advanced Medical Therapy & Revascularization

Management of Stable Angina (continued)

Risk Factor Modification

- Smoking cessation
- Weight reduction
- Control of comorbidities (diabetes, hypertension)
- Aerobic exercise: improves both functional capacity and angina symptoms

Increase Oxygen Supply vs Decrease Oxygen Demand

This is one of the **core frameworks** of angina therapy:

To Increase O₂ Supply	To Decrease O ₂ Demand
1. \uparrow Diastolic time $\rightarrow \beta$ -blocker	1. \downarrow Heart rate $\rightarrow \beta$ -blocker, CCB
2. \downarrow Coronary tone \rightarrow Nitrate, CCB	2. \downarrow Contractility $\rightarrow \beta$ -blocker, CCB
3. \downarrow LV diastolic pressure \rightarrow Nitrates	3. \downarrow Wall tension (\downarrow preload/afterload) \rightarrow nitrates
4. Correct stenosis \rightarrow PCI or CABG	4. Shift metabolism → trimetazidine
5. \uparrow O ₂ -carrying capacity \rightarrow transfusion if anemic	

Solution occurs when supply < demand. So treatment either enhances supply (flow, O₂ content) or lowers demand</p> (workload).

Nhen to Revascularize

"Revascularization is indicated when medical therapy fails"

- PCI: Percutaneous Coronary Intervention
- **CABG**: Coronary Artery Bypass Graft Used when:
- Angina persists despite optimal medication
- High-risk coronary anatomy
- Left main or triple-vessel disease
- Reduced EF

🚀 New Medical & Invasive Therapies for Refractory Angina

Patients with angina that persists despite optimized conventional therapy are considered to have refractory angina.

Netabolic Modulators

Drug	Mechanism
Trimetazidine	Shifts metabolism from fatty acid to glucose oxidation
Ranolazine	Inhibits late Na ⁺ current $\rightarrow \downarrow$ intracellular Ca ²⁺
Ivabradine	Inhibits SA node \rightarrow \downarrow HR without \downarrow contractility
Nicorandil	Potassium channel opener + nitrate-like effect
Bosentan	Endothelin receptor blocker \rightarrow improves endothelial
	function
Testosterone	May improve endothelial vasodilation (experimental)

Invasive Non-Pharmacologic Options

- 1. Enhanced External Counterpulsation (EECP)
- Cuffs on legs inflate during diastole → improve coronary perfusion
- 2. Spinal Cord Stimulation
- Modulates pain transmission, may improve myocardial perfusion reflexively
- 3. Laser Revascularization & Angiogenesis
- Still experimental aims to induce new vessel growth in ischemic myocardium

📌 Differential Diagnosis of Angina-like Chest Pain

Some non-cardiac causes to always rule out in atypical angina cases:

- 1. Neuromuscular disorders (e.g., cervical radiculopathy)
- 2. **Respiratory conditions** (e.g., pleuritis, PE, pneumothorax)
- 3. Upper GI disorders (GERD, spasm, ulcer)
- 4. **Psychological causes** (e.g., anxiety, panic attacks)
- 5. Syndrome X (covered on next page)

Don't call it "angina" until you've ruled out these mimics — especially in women, young patients, and those with normal coronaries.

Special Forms of Angina & Therapy Stratification

Syndrome X (Microvascular Angina)

Definition:

"Exertional angina with normal coronaries on angiography"

- Presents like typical stable angina: exertional chest pain
- BUT: Cardiac catheterization shows no significant stenosis
- Stress testing and nuclear imaging still show objective evidence of ischemia

Pathophysiology:

- Microvascular dysfunction:
- Coronary microvessels (not visible on angiography) fail to dilate appropriately
- Endothelial dysfunction is the key

🙆 Classic Patient:

- Middle-aged woman
- Normal ECG at rest
- Positive stress ECG (ST depression)
- Normal angiogram

📌 Prognosis:

- Generally excellent
- Risk of infarction/death is low, but symptoms can be persistent and frustrating

Variant Angina (Prinzmetal)

"Rest angina associated with ST elevation and ventricular arrhythmias"

Key Features:

- Occurs at rest, often at night or early morning
- Caused by transient spasm of coronary arteries
- Not related to exertion or plaque burden

ECG Findings:

- Transient ST elevation
- May return to normal between attacks

¹ Diagnosis:

- Often confirmed by provocative testing during angiography
- IV acetylcholine or ergonovine used to induce spasm
- ST elevation + no obstructive disease on cath = diagnostic

×β-blockers are contraindicated

• They may worsen coronary spasm by unopposed alpha stimulation

VTreatment:

- Nitrates: relieve acute spasm
- Calcium channel blockers (CCBs): prevent recurrence

Associated Conditions:

- Migraine
- Raynaud's phenomenon
- Other vasospastic syndromes

Stratified Management of Angina by Severity

Mild Angina

- EF: Normal
- Symptoms: Mild
- Anatomy: Single-vessel disease
- Treatment:
- β-blockers + nitrates
- Add CCB if symptoms persist
- Focus on medical therapy

Moderate Angina

- EF: Normal
- Symptoms: Moderate
- Anatomy: 2-vessel disease
- 🔶 If medical therapy fails ightarrow Consider coronary angiography To assess whether PCI or CABG is suitable

Severe Angina

- EF: Reduced
- Symptoms: Severe
- Anatomy: 3-vessel or left main disease
- Proceed directly to:
- Coronary angiography
- Likely CABG preferred over PCI
- Avoid CCBs in reduced EF patients

SCCBs can worsen systolic dysfunction — especially nondihydropyridines like verapamil/diltiazem

RECAP

💙 1. Basic Cardiac & Coronary Physiology

Concept	Value/Detail
Heart rate	~70 bpm
Output	~6–7.5 L/day
Perfusion	80% in diastole
O ₂ extraction	Already ~75% \rightarrow supply is flow-dependent
Collaterals	Exist but require ischemia to activate

2. O₂ Demand vs Supply (Core Angina Mechanism)

个 Demand	↓ Supply
\uparrow HR, \uparrow contractility, wall tension	CAD (atherosclerosis)
LVH (HTN, AS, HCM)	Severe anemia
Tachyarrhythmia	Carboxyhemoglobinemia (CO)
Thyrotoxicosis	Hypotension

3. Atherosclerosis Pathogenesis

- 1. Endothelial injury (HTN, smoking, etc.)
- 2. Cytokine, chemokine, GF release
- 3. Monocyte migration \rightarrow macrophages
- 4. LDL oxidation \rightarrow foam cells
- 5. Fatty streak \rightarrow fibrous cap \rightarrow plaque

Stable vs. Unstable Plaque:

Stable	Unstable
Thick cap	Thin cap
Small lipid core	Large lipid core
Few inflammatory cells	Many inflammatory cells

V² 4. Clinical Manifestations by Territory

Artery	Disease
Coronary	Angina, MI, CHF, arrhythmia, sudden death
Carotid/cerebral	TIA, stroke
Peripheral	Claudication, gangrene, impotence

5. Types of Angina

Туре	Key Feature	Cause	ECG	Treatment
Stable	Predictable, exertional	Fixed plaque	Often normal	BB, nitrates, CCB
Syndrome X	Normal coronaries + ischemia	Microvascular dysfunction	ST \downarrow on stress	BB, CCB (limited effect)
Variant (Prinzmetal)	Rest pain, ST elevation	Coronary spasm	ST 个 at rest	Nitrates + CCB (no BB)

Unstable	Rest pain,	Plaque rupture +	ST ↓ ± T inv	ACS protocol (next
	worsening, new	thrombus		lecture)
	pattern			

6. Diagnostic Approach for Stable Angina

Test	Purpose	
History + ECG	Clinical diagnosis	
Stress ECG	ST depression = ischemia	
Stress Echo	Wall motion abnormality (e.g. hypokinesis)	
Nuclear Scan	\downarrow Isotope uptake during stress	
Coronary Angiography	Gold standard, anatomical	

7. Stress Test Interpretation

- **Positive test**: ST depression ≥1 mm → move to angiography
- Avoid stress ECG if:
- LBBB
- LVH
- Baseline ST abnormality → Use **stress echo** or **nuclear scan**

8. Medical Therapy Framework

Goal	Medications
↓ Mortality Aspirin, statins, ACE inhibitors	
↓ Symptoms	BB, nitrates, CCB
Advanced	Ranolazine, trimetazidine, ivabradine
Refractory	EECP, spinal stim, laser, PCI, CABG

4 9. Who Gets Revascularized?

Severity	Clues	Management
Mild	Single-vessel, normal EF	Medical
Moderate	2-vessel, normal EF	Maybe PCI/CABG
Severe	\downarrow EF, 3-vessel or left main	Likely CABG

I0. Contraindications You Must Remember

- β-blockers contraindicated in variant angina
- CCBs avoided in reduced EF
- Don't rely on normal ECG to rule out ischemia