"Normal Potassium Balance"

This refers to how the body keeps potassium levels stable in both the blood and inside cells.

🖉 "100 mEq K+"

This means we take in about 100 milliequivalents of potassium every day through food.

"Extracellular fluid: 65 mEq"

Only about 65 mEq of total body potassium is in the blood and other fluid outside cells. That's only around 2% of all potassium!

🢪 "RBC ~250 | Muscle ~2500 | Liver ~250 | Bone ~500"

Most potassium is inside cells:

- Red blood cells: ~250
- Muscles: a huge amount (~2500)
- Liver and bones store some too.

* "Mainly intracellular"

Almost all of the body's potassium is inside the cells (intracellular). Only a tiny part is in the blood.

阄 "Hypokalemia treated by urine diuretics. Gut we give potassium."

• If low K⁺ (hypokalemia): You can treat by giving potassium orally (gut) or stop diuretics that cause loss through urine.

• Diuretics like furosemide can make you lose K⁺ in urine.

"Exchange hormones trigger it. Target = 3.5 – 5.0 mmol/L"

- The goal of the body is to keep blood potassium between 3.5–5.0.
- Hormones like insulin and aldosterone help adjust potassium by moving it into cells or making you pee it out.

🐨 "Excretion ~100 mmol"

The body **excretes about 100 mmol/day**, mostly in **urine**. That balances what you eat. . kidney (90-95 mmol or mEq) / gut (5-10 mmol or mEq)

C "Extra-renal K⁺ homeostasis: Shift/Redistribution"

This means **potassium moves between cells and blood** (not through the kidneys) — it's called **redistribution**.

"4 major factors: for shift/ redistribution

Now we'll list the **four key things** that control where potassium is (inside vs. outside the cell):

- Note : anything that pushes inside the cell-> hypokalemia since we have less k in blood and the opposite of pushing out)

✓ "– Hormones" → (like insulin or epinephrine)

These hormones **push potassium into cells**.

🗹 "– Acid-base status"

Acidosis = pushes K⁺ out of cells Alkalosis = pushes K⁺ into cells

"– Plasma tonicity"

If the blood becomes more concentrated (hypertonic), it pulls water and potassium out of cells.

🗹 "– Plasma [K⁺]"

If potassium in the blood gets high, the body tries to shift it into cells or pee it out.

Acute	
Factor Set	Effect on potassium
Insulin Hanggement of hypernationa	Enhanced cell uptake
[#] β-Catecholamines	Enhanced cell uptake
α-Catecholamines	Impaired cell uptake
Acidosis	Impaired cell uptake
Alkalosis (Hysokalemia)	Enhanced cell uptake
External potassium balance	Loose correlation
Cell damage	Impaired cell uptake
Hyperosmolality	Enhanced cell efflux (
Chronic	
Factor	Effect on ATP
	pump density
Thyroid	Enhanced
Adrenal steroids	Enhanced
Exercise (training)	Enhanced
Growth	Enhanced
Diabetes	Impaired
Potassium deficiency	Impaired
Chronic renal failure	Impaired

"Zona Glomerulosa of the Adrenal cortex"

This is the part of the adrenal gland that **makes aldosterone**, a hormone that controls potassium and sodium.

1+2 = what controls the aldosterone

1- 2 "Release stimulated by Renin/Angiotensin system"

If your blood pressure or sodium is low, this system tells the adrenal gland to release aldosterone.

2- 🖉 "Direct effect of K⁺ on adrenal"

If potassium in blood gets too high, that also **directly triggers** aldosterone release to remove the extra.

"Effects of Aldosterone: Exchange Na⁺ for K⁺ or H⁺"

Aldosterone pulls sodium into the blood and pushes K⁺ and H⁺ into urine.

• This keeps Na⁺ and BP up, and K⁺ + H⁺ under control.

🝣 "Sites of action: Distal renal tubule, colon, sweat glands"

Aldosterone works mainly in the **last part of the nephron (distal tubule)**, but also in the **colon and sweat glands**, especially if kidneys aren't working well.

"In renal failure, the colon is an important site for K⁺ regulation"

If the kidneys **can't get rid of K**⁺, the **colon becomes more important** in helping excrete it. (note that normally we have execration by kidneys in 90% and gut 10%. But if we have renal failure: kidney is 70% and gut is 30%)

"Cortisol has mineralocorticoid activity"

At very high levels (like in Cushing's syndrome), cortisol can act like aldosterone and affect K⁺ and Na⁺.

🖊 Acid/Base

Note : principle cells control k+/ intercalated cells control h+

《 "Metabolic Acidosis 个 [K⁺]"

When you have metabolic acidosis, the blood has too much H⁺ (acid). To fix this:

- H⁺ enters cells.
- To keep balance, K⁺ exits the cells \rightarrow leading to high K⁺ in blood (hyperkalemia).

"Inhibition of renal tubular K⁺ secretion"

In acidosis, the kidney stops secreting K⁺ properly, which means more K⁺ stays in the blood \rightarrow again, hyperkalemia.

"Shift of K⁺ from ICF to ECF"

ICF = inside cells; ECF = outside (blood). Acidosis pushes K⁺ out of cells into blood \rightarrow again causes hyperkalemia.

Metabolic Alkalosis ↓ [K⁺]"

Opposite of acidosis:

- Less H^+ in the blood $\rightarrow H^+$ comes **out of cells**
- To balance, K^+ goes into cells \rightarrow Result: hypokalemia (low blood K^+)

"Patient has acidosis and hypokalemia. What are 2 DDx?"

? "DDx" = differential diagnoses (possible causes)

- 1. **Proximal renal tubular acidosis (RTA Type 2)**:
- Kidney can't reabsorb bicarbonate \rightarrow causes acidosis
- Also leads to K⁺ loss = hypokalemia
- 2. Diarrhea:
- You lose both **bicarbonate** (→ acidosis) and K⁺ (→ hypokalemia) in the stool

Intake vs. Output

Intake: from food (about 100 mEq/day)

You eat potassium every day in fruits, vegetables, etc.

Output:

- 1. **Kidney**: Most important way to remove potassium
- 2. Sweat glands
- 3. **Gut (colon)** especially important in kidney failure

ECF [K⁺] depends on:

- How much K⁺ moves between cells and blood
- Controlled by:
- Hormones (insulin, aldosterone)
- Acid/base
- Tonicity (concentration of solutes in blood)
- Blood potassium level itself

\ll "Renal artery \rightarrow Glomerulus \rightarrow Distal Tubule = Fine tuning"

Potassium handling in the kidney:

- Proximal tubule: absorbs most of the K⁺
- **Distal tubule**: adjusts how much is lost → "fine tuning"
- Controlled by aldosterone

Aldosterone causes K⁺/H⁺ secretion and Na⁺ reabsorption

This is **the key job** of aldosterone:

- K⁺ and H⁺ go **into urine**
- Na⁺ goes into blood \rightarrow water follows \rightarrow raises BP

600 mmol/day K⁺ filtered

Your kidneys filter 600 mmol of potassium every day.

▲ 100 mmol/day K⁺ excreted (about 10–20%)

Even though a lot is filtered, the kidney reabsorbs most and only excretes what you don't need.

Renal Handling of K⁺

TABLE 4. FOODS WITH HIGH POTASSIUM CONTENT. Highest content (>1000 mg [25 mmol]/100 g) Dried figs Molasses Seaweed Very high content (>500 mg [12.5 mmol]/100 g) Dried fruits (dates, prunes) Nuts Avocados Bran cereals Wheat germ Lima beans High content (>250 mg [6.2 mmol]/100 g) Vegetables Spinach Tomatoes Broccoli Winter squash Beets Carrots Cauliflower Potatoes Fruits Bananas Cantaloupe Kiwis Oranges Mangos Meats Ground beef Steak Pork Veal Lamb

Segment	% of K ⁺ Reabsorbed
Proximal tubule	60–70%
Loop of Henle	20–30%
Distal tubule & collecting duct	Fine tuning of last 10%

100% of filtered K⁺ is reabsorbed before the distal tubule

So the distal tubule's job is to add back what needs to be excreted.

"Substance | Effect of Aldosterone | Mechanism"

Let's explain the effects of aldosterone on each substance clearly:

🍤 Potassium (K⁺):

- Effect: ▼ Decreases in blood (because more K⁺ goes into urine).
- **How:** Aldosterone **opens** K^+ **channels** in principal cells $\rightarrow K^+$ goes into urine.

+ Hydrogen ions (H⁺):

- Effect: ▼ Decreases in blood (more acid secreted).
- How: Aldosterone activates intercalated cells, which push H⁺ into urine.

Sodium (Na⁺):

- Effect: A Increases in blood (reabsorbed).
- **How:** Aldosterone **activates ENaC channels**, which pull Na⁺ from urine into the body.

Blood Pressure (BP):

- Effect: A Increases
- **How:** More Na⁺ \rightarrow More water follows \rightarrow More volume \rightarrow \uparrow BP

Mnemonic:
"Aldosterone saves salt (Na⁺), pumps out K⁺ and H⁺." (Save salt, pee potassium and protons)

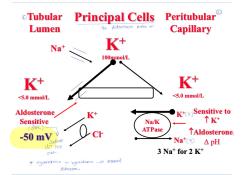
Na⁺/K⁺ ATPase Pump Diagram (in words)

Imagine:

- Aldosterone works on tubular lumen and pre tubular capillary

Inside the kidney **principal cell**, you have a pump:

- 🔁 It moves:
- 3 Na⁺ OUT → into blood
- 2 K⁺ IN ← from blood
- It needs **ATP** (energy) to work


• Creates a **negative charge inside** the cell \rightarrow helps pull more Na⁺ from urine This gradient helps **exchange Na⁺ for K⁺** and is the **engine** behind aldosterone's effects.

Electrochemical Gradient – Why K⁺ is Secreted

- When Na⁺ is reabsorbed, it makes the inside of the tubule more negative.
- This **pulls K⁺ out of cells** and into the urine.
- That's why anything that increases Na⁺ reabsorption \rightarrow also increases K⁺ loss.

Factors Favoring K⁺ Secretion

Factor	Why it Increases K ⁺ Loss
✓ High Na ⁺ reabsorption	Makes tubule more negative
✓ High intracellular K ⁺	More K ⁺ leaks into urine
Increased fluid to distal nephron	"Washes out" K⁺

Aldosterone	Opens K ⁺ channels
× Low H ⁺ (alkalosis)	More K ⁺ secreted in exchange

Examples of wash-out:

- **Diuretics** increase flow
- **Osmotic diuresis** (like in diabetes)
- **Poorly absorbed anions** (e.g., bicarbonate)

Electrochemical Competition Between K⁺ and H⁺

- K⁺ and H⁺ both want to leave the cell.
- They use **the same exit path** (the negative gradient).
- So:
- If more H⁺ exits, less K⁺ can exit, and vice versa.
- That's why in **acidosis**, H^+ exits and K^+ builds up \rightarrow hyperkalemia.

Causes of Hyperkalemia

👯 1. Increased intake

- Rare unless you have kidney problems
- Ex: Too many K⁺ supplements or bananas + renal failure

💐 2. Shift from cells to blood

(Redistribution) — potassium moves from inside the cell to outside:

Cause	Why
Acidosis	H ⁺ enters cells, K ⁺ leaves
Insulin deficiency	No insulin \rightarrow K ⁺ stays outside
Beta blockers	Block the "push K ⁺ into cells" action of adrenaline
Exercise or trauma	Muscle breaks \rightarrow K ⁺ leaks out
Digitalis overdose	Messes with Na ⁺ /K ⁺ ATPase
Tumor lysis	Cells break open from chemo \rightarrow K ⁺ released
Succinylcholine	Muscle relaxant $\rightarrow K^+$ outflow
Hyperkalemic periodic paralysis	Genetic disorder — sudden K ⁺ rise in blood
Post cardiac surgery	
Tissue catabolism	Trauma/ cytotoxic agents (TLS)/ severe
	hypothermia
Pseudohyperkalemia	Movement of k+ out of cells during or after blood
	drawing : hemolysis/ fist clenching(local exercise
	effect)/ marked leukocytosis

[≉] 3. Decreased Excretion

Condition	Mechanism
Renal failure	Kidney can't pee out K ⁺
Low aldosterone	1-Decreased activity of renin-angiotensin system
	- Hyporeninemic hypoaldosteronism (T4 RTA)/
	NSAIDS, ACE-I, CSA
	2• Primary decrease in adrenal synthesis
	 – Adrenal insufficiency, CAH, heparin
	•3- Aldosterone resistance
	 – K+sparing diuretics, trimethoprim, CSA
	– pseudohypoaldosteronism
Tubular problems	Type 4 RTA, drugs like spironolactone

Most common causes = renal failure + redistribution due to acidosis + medications.

Symptoms of Hyperkalemia

System	Symptoms	
Muscles	Weakness, paralysis	
Heart	ECG changes, arrhythmias, cardiac arrest	
Gut	Nausea, vomiting, ileus (no movement)	

V ECG in Hyperkalemia = PQRST Gets Lost!

- P wave disappears
- Prolonged PR
- QRS widens
- T wave tall & peaked
- Depressed ST
- Ends in **Sine wave** \rightarrow then cardiac arrest (v.fib/ v. Tach)

Muscle weakness –

- decr magnitude of resting MP
- Cardiac toxicity

Enhanced by :

- Hypocalcemia
- Acidemia
- Hypomagnesemia
- Rapid onset

Treatment of Acute Hyperkalemia (Life-threatening)

- 1. Stabilize the heart Sive IV Calcium Gluconate
- 2. Push K⁺ into cells (buying time but this is not the final tx) VI Insulin + Glucose, Albuterol, Bicarbonate
- 3. Remove K⁺ from body **V** Kayexalate (GUT), Diuretics(kidney), Dialysis (if nothing works)

Treatment of Chronic Hyperkalemia (Less urgent)

- Reduce potassium intake (diet) 2g/day // OTC that contains k+
- 🚫 Avoid NSAIDs, ACEi, ARBs
- Vse diuretics to increase loss
- Treat constipation (K⁺ can be excreted in stool too)
- **S** Kayexalate as needed

Hypokalemia = Low Potassium (K⁺ < 3.5 mmol/L)

! Etiology of Hypokalemia (Causes)

✓ 1. Decreased net intake

- Rare by itself.
- But low intake **combined with loss** makes hypokalemia worse.
- Ex: Starvation, eating clay (pica) binds K⁺ and stops absorption.

2. Increased entry of K⁺ into cells

This means K⁺ moves from **blood into cells**, lowering blood potassium.

Cause	Why it happens
Alkalosis	H ⁺ leaves cells, so K ⁺ goes in to balance charge
Insulin	Insulin activates Na ⁺ /K ⁺ pump \rightarrow pushes K ⁺ into
	cells
Beta-adrenergic stimulation	Epinephrine pushes K ⁺ into cells

Seriodic Paralysis

- K⁺ shifts into cells **suddenly**, causing severe hypokalemia. •
- Two types:
- Familial (genetic, in young males)
- Acquired (from thyrotoxicosis, especially in Asian men)
- Triggered by: •
- **High-carb** meals •
- Rest after exercise •
- Cold, stress
- Insulin or adrenaline •
- NOTE : K+ would be normal between attacks

3. Increased GI Losses

Cause	Explanation
Vomiting	Loss of stomach acid \rightarrow kidneys excrete K ⁺ to
	compensate
Diarrhea	Direct loss of K ⁺ from stool
Fistulas / tube drainage	Loss of intestinal fluid with high K ⁺
Laxative abuse	Like diarrhea – causes K ⁺ loss
Diuretic abuse	
Villous adenoma	

All the causes end with hypokalemia but its different when it comes to metabolic alkalosis or acidosis

Cause	What is lost?	Acid-base status	Why?
Vomiting / NG tube	H ⁺ (stomach acid)	Alkalosis	Losing acid directly
Diarrhea / Laxatives	HCO₃ ⁻ (bicarbonate) + K⁺	Acidosis	Losing base
Diuretics	K ⁺ and H ⁺ (via kidney)	Alkalosis	RAAS activation → aldosterone increases H ⁺ loss

📌 Clue:

High urine calcuim

Vomiting \rightarrow metabolic alkalosis

Diarrhea \rightarrow metabolic acidosis

note: lose of upper GI (fICI) = fikalosis - & same as NG tube. juse of lower GI - 7 Bicarbonate mainly found in colon -D Acidosis (same as laxutive)

Cause	Mechanism
Diuretics (loop or thiazides)	Increased Na ⁺ delivery $\rightarrow \uparrow K^+$ secretion
Bartter / Gitelman syndromes	Genetic tubule disorders \rightarrow kidney loses K ⁺
Hyperaldosteronism	Aldosterone pushes K ⁺ out
RTA (Renal Tubular Acidosis)	Some types waste K ⁺

📌 Bartter vs. Gitelman:

-

more than barter / nor mal unine

Cakuim

Bartter = Thiazide

4. Increased Urinary Losses

Gitelmar. loop duritics has Nypo Mg

Both $\rightarrow \uparrow$ renin, \uparrow aldosterone \rightarrow hypokalemia

5. Increased Sweat Losses

- Seen in athletes, hot climates
- Sweat contains small but significant K⁺

/ 6. Other losses: Dialysis

• Removes K⁺ during treatment, especially if not adjusted correctly

A Consequences of Hypokalemia

Organ System	What Happens
Sector Muscles	Weakness, cramps, paralysis
🥯 Heart	ECG changes, arrhythmias, 个 Digoxin toxicity
🥯 Kidneys	Poor urine concentration, tubular damage
🧠 Gut	Constipation, paralytic ileus (no movement)

Hypokalemia & Hypertension Workup

When you see **low K⁺ + high BP**, think of **aldosterone problems**.

Lab Test	What It Tells You
Urine K ⁺ > 30 mEq/day	Kidney is wasting K⁺
Renin level	High = Secondary cause (e.g. renal artery stenosis)
	Low = Primary (like Conn's) _ Jo jo hyperalderesteroile
Aldosterone level	High = Hyperaldosteronism
	Low = other causes

烤 Example:

• High BP + low K⁺ + high aldosterone = Conn's syndrome (aldosterone-producing tumor)

Cortisol and Potassium

- Cortisol can act like aldosterone if in high amounts.
- Normally, an enzyme (11 β -HSD) converts cortisol \rightarrow cortisone (inactive).
- If this enzyme is **blocked** (like in licorice ingestion عرق السوس), cortisol starts acting like aldosterone.

Disorders related 11b HSD :

Condition	Cause
Cushing's	High cortisol production
Syndromw of AME (Syndrome of Apparent	Genetic or due to licorice
Mineralocorticoid Excess)	
Liddle's syndrome	ENaC channel mutation (Na ⁺ kept, K ⁺ lost)

^V² Work-up of Hypokalemia (Step-by-Step) ■

- 1. **History**: Vomiting, diarrhea, drugs, eating disorders, diuretics
- 2. Acid-base status: Alkalosis or acidosis?
- 3. Urine K⁺:
- <15 mEq/L = loss is outside kidney , in stool for example (like diarrhea)
- 30 mEq/L = kidney is wasting it (e.g. diuretics, RTA)

Treatment of Hypokalemia : not urgent UNLESS complications

Situation	Treatment
Mild	Oral K ⁺ — safer and preferred
Moderate to severe	IV K⁺ if urgent, <mark>max 10 mmol/hr</mark>
Also give Mg ⁺⁺ if low	Low magnesium = hard to fix K ⁺ !

Correction rule:

- If K⁺ is 3.0 mmol/L (from serum), deficit <300 mmol (from total body deficit)
- If K⁺ is **2.0 mmol/L**, deficit **∉ 600 mmol**
- So it takes time to fully replace do it slowly because it an cause arrhythmia
- Small changes in blood K⁺ = big total body losses
- That's why **potassium replacement takes time**, even if the number doesn't look *that* low.

nephropathy and baseline Cr aroun baseline Cr aroun 138, K 5.7, HCO showed 7.32/34/1 What is the most	likely diagnosis? uced metabolic acidosis. erdose. rcol overdose	years, CKD III with egular clinic visit. Na Urine pH 5.0. ABGs PH: 95-80.	 70 yo man presented to the ER c/o fever, chills and SOB for one week. CXR showed bilateral pneumonia. BP is 100/60 (baseline around 140s-150s/80s-90s). Lab showed Cr of 5.0. K 7.0. EKG showed hyper-acute T waves. What is the best next step? (A) IV calcium gluconate. B) PO kayexalate. C. IV furosemide D. Emergent HD catheter and dialysis. E. Call the nephrology team and tell them to come and take care of their patient since you are busy and have other patients to see in the ER.
~		5 c 💮 🞝 🖡	
136. K 3.1. CI 110	resented to the ER with 0. CO2 15. ABGs showe 8 16. Urine: Na 10 meq/l	d pH 7.28.	24 year old lady presented to the ER with weakness. BP 85/45. BMI 35. Na 138. K 2.8. CO2 34. Mg 1.2. ABGs 7.49/45/34. She has been trying hardly to lose weight but denies <u>laxatives or diuretics use</u> . What is the best part stop to reach a most likely diagnosis?

What is the most likely diagnosis? DKA Lactic acidosis Severe vomiting Severe diarrhea RTA

38 40

 \sim

- What is the best next step to reach a most likely diagnosis? Given low serum Mg along with other lab values she most likely has <u>Gitelman</u> syndrome.
 - Given low serum Mg along with other lab values she most likely has <u>Bartter</u> syndrome.
 - She is most likely abusing laxatives. Ask more questions about laxatives abuse.
 - Send a blood and urine sample for diuretics screen. She most likely had anorexia nervosa.
 - not \mathbb{C} or O \longrightarrow we would find her having acidosis or underweight the answer is O = she's using something to lose weight

, v