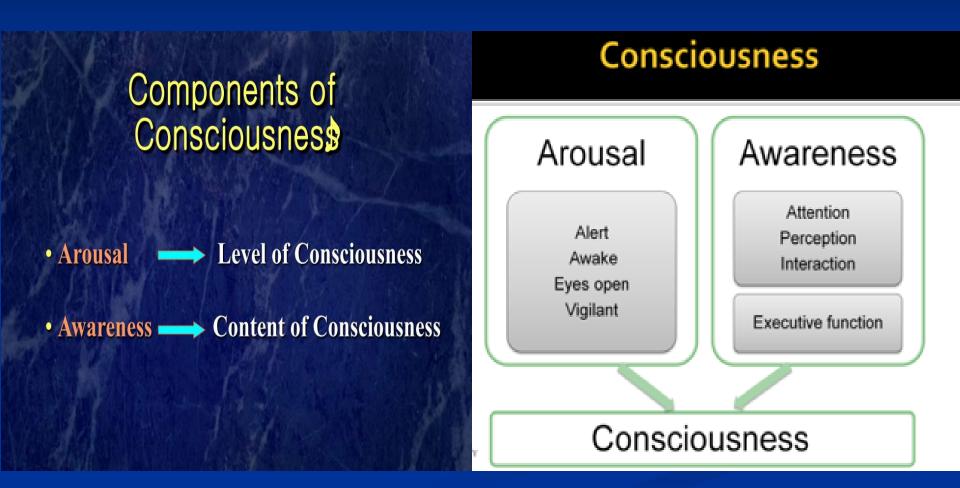
Neurological Emergencies/ CNS Infections

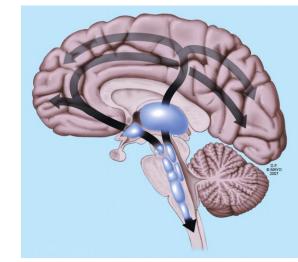

Majed Habahbeh MBBS FRCP

Neurological Emergencies-At least 20% of Medical ER visits

Coma.

- Meningitis/encephalitis
- Acute Stroke.
- Seizures / Status epilepticus.
- Acute headaches/Subarachnoid hemorrhage.
- Acute flaccid paralysis limbs, bulbar, respiratory (Guillain-Barre' Syndrome, Myasthenia Gravis...)
- Acute myelopathy/spinal cord compression
- Vision loss (Optic Neuritis, Papilledema)
- Vertigo (posterior circulation stroke)

Components of Consciousness

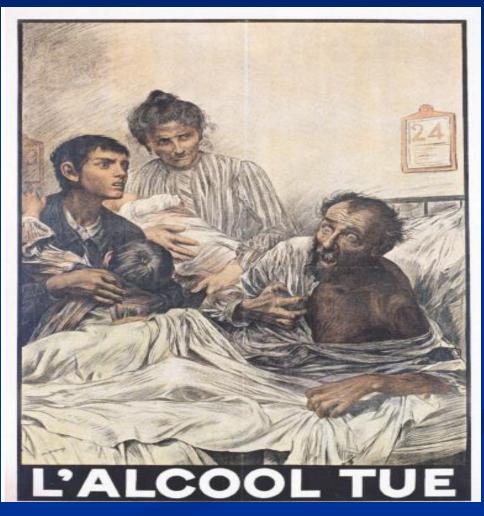


Anatomy of consciousness

Level of consciousness is regulated by the ascending reticular activating system in the midbrain and pons with projections to the thalamus and cortex.

Content of consciousness

The main pathways connecting the ascending reticular formation with the thalamus and cortex.


Wijdicks E F M Pract Neurol 2010;10:51-60

©2010 by BMJ Publishing Group Ltd

Content of consciousness Terminology

- Acute confusional state
- Delirium
- Delirium is derived from the Latin verb delira—to deviate/ go crazy.

Levels of Consciousness

Wakefulness

Drowsiness (response to verbal stimulus)

Stupor (response to noxious stimulus)

> Coma (unresponsiveness)

Glasgow Coma Scale					
Eye Response	Open Spontaneously	4			
	Open to Verbal command	3			
	Open in response to pain	2			
	No response	1			
Verbal Response	Talking / Orientated	5			
	Confused speech / Disorientated	4			
	Inappropriate Words	3			
	Incomprehensible sounds	2			
	No response	1			
Motor Response	Obeys commands	6			
	Localizes pain	5			
	Withdraws from pain	4			
	Abnormal flexion	3			
	Extension	2			
	No response	1			

Spectrum of Acute Brain Dysfunction

	Coma	Stupor	Delirium							
RASS	-5 Unarousable: No response to voice or physical stimulation	-4 Deep sedation: No response to voice, but responds to physical stimulation	-3 Moderate Sedation: Responds to voice, but does not make eye contact	-2 Light Sedation: Responds to voice, but can only make eye contact for < 10 seconds	-1 Drowsy: Responds to voice and can make eye contact for > 10 seconds	0 Alert and calm	+1 Restless: Anxious, but movements not agressive	+2 Agitated: Frequent, non- purposeful movement	+3 Very Agitated: Pulls or removes tubes or catheters, agressive	+4 Combative: Overtly combative, violent, danger to staff

Coma is defined as a completely unawake patient unresponsive to external stimuli

Brainstem reflexes can be intact or absent

Evaluation of the Comatose Patient

All causes of coma fall into one of the following major categories :

1. Structural injury of both cerebral hemisphere or one hemisphere causing mass effect and midline shift.

2. Intrinsic brainstem injury, or compression from surrounding damaged tissue (Cerebellum)

3. Acute metabolic or endocrine derangement

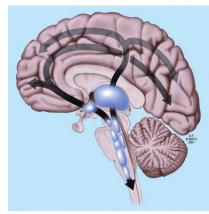
4. Diffuse physiological brain dysfunction-seizures, anoxia, drug toxicity

Structural brain injury of Cerebral hemisphere(s)

Unilateral with displacement

- Intraparenchymal hematoma
- Middle cerebral artery ischemic stroke
- Intracranial venous thrombosis
- Cerebral abscess
- Brain tumor
- Subdural or extradural hematoma

Bilateral


- Subarachnoid hemorrhage
- Traumatic brain injury
- Multiple cerebral infarcts
- Bilateral thalamic infarcts
- **Tumors**
- Encephalitis
- Cerebral edema
- Acute hydrocephalus
- Posterior reversible encephalopathy syndrome (PRES)
- Air or fat embolism.

Intrinsic brainstem injury, or compression from surrounding damaged tissue

- Pontine hemorrhage
- Basilar artery occlusion and brainstem infarct
- Central pontine myelinolysis
- Brainstem hemorrhagic contusion

Cerebellar infarct
Cerebellar hematoma
Cerebellar abscess
Cerebellar glioma

The main pathways connecting the ascending reticular formation with the thalamus and cortex.

Wijdicks E F M Pract Neurol 2010;10:51-60

CAUSES OF COMA WITHOUT FOCAL SIGNS

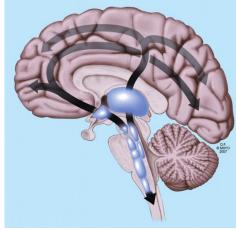
Toxic	Alcohol, carbon monoxide, lead, cyanide, thallium, sedative drugs
Metabolic	Uraemia, hyperammonaemia, neuroleptic malignant syndrome, anoxic-ischaemic encephalopathy, hypercarbnia, hypo/hyper-natraemia, hypo/hyper- calcaemia, hypermagnesaemia, hypoglycaemia, hypothermia, hyperpyrexia, Wernicke's
Epileptic	Convulsive/non-convulsive status epilepticus
Endocrine	Hypopituitarism, hypothyroidism, hyperthyroidism, hypoadrenalism, Hashimoto's encephalopathy

Acute metabolic/endocrine derangement

- Hypoglycemia (<40-50 mg/dl)</p>
- Hyperglycemia (Ketotic and Non-ketotic)
- Hyponatremia (<110 mmol/1)</p>
- Hypernatremia (>160 mmol/1)
- Hypercalcemia (>13.5 mg/dl)
- Hypercapnia (>65 mmHg)

What can mimic coma

1- locked-in syndrome


- Eyes open.
- Blink to commands or move their eyes vertically.
- lesion (stroke) in the ventral pons damaging the corticospinal and corticobulbar tracts and sparing the ascending reticular activating system. So they can hear, see and feel pain.

Patients can be intubated by mistake.

2- Psychogenic unresponsiveness

- Hysterical coma
- Malingering
- Acute catatonia

The main pathways connecting the ascending reticular formation with the thalamus and cortex.

Wijdicks E F M Pract Neurol 2010;10:51-60

Psychogenic unresponsiveness

Considered after exclusion of other causes !!

- The hand drop test is a useful test (one arm is lifted and held in front of the face and when let loose slides next to the patient's face rather than on to it).

- Closed eyes which open with tickling the nose hairs

- Some patients may have forced upward or downward gaze that may suddenly change in direction.

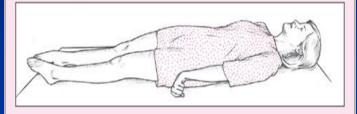
- Others have pseudoseizures- 'fish out of water' flopping.

Examination of the comatose patient

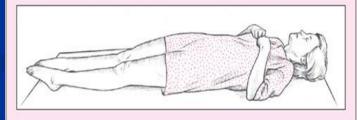
1. Assess the depth of coma.

2. The location of the lesion, and

3. Possibly the underlying cause.



Glasgow Coma Scale

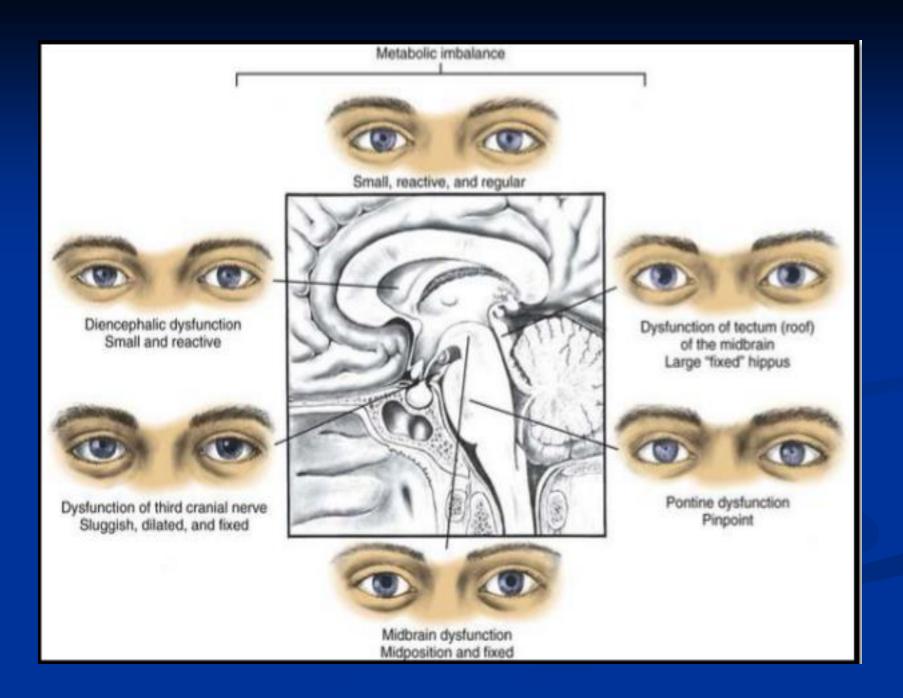

Glasgow Coma Scale					
Eye Response	Open Spontaneously	4			
	Open to Verbal command	3			
	Open in response to pain	2			
	No response	1			
Verbal Response	Talking / Orientated	5			
	Confused speech / Disorientated	4			
	Inappropriate Words	3			
	Incomprehensible sounds	2			
	No response	1			
Motor Response	Obeys commands	6			
	Localizes pain	5			
	Withdraws from pain	4			
	Abnormal flexion	3			
	Extension	2			
	No response	1			

Comparing decerebrate and decorticate postures

Decerebrate posture results from damage to the upper brain stem. In this posture, the arms are adducted and extended, with the wrists pronated and the fingers flexed. The legs are stiffly extended, with plantar flexion of the feet.

Decorticate posture results from damage to one or both corticospinal tracts. In this posture, the arms are adducted and flexed, with the wrists and fingers flexed on the chest. The legs are stiffly extended and internally rotated, with plantar flexion of the feet.

Record subsets: E()+M()+V() = ?/15A score of < 8 usually indicates coma Verbal response can be compromised by endotracheal intubation V(T) should be recorded.


Examination of the comatose patient

1. Assess the depth of coma.

2. Determine if there is structural brain pathology and aim to localize it-

- meningism
- focal weakness
- pupils / eye position and movements
- DTR's and plantar response

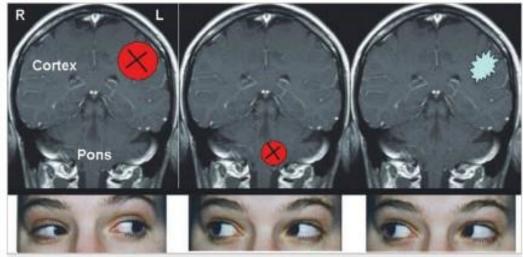
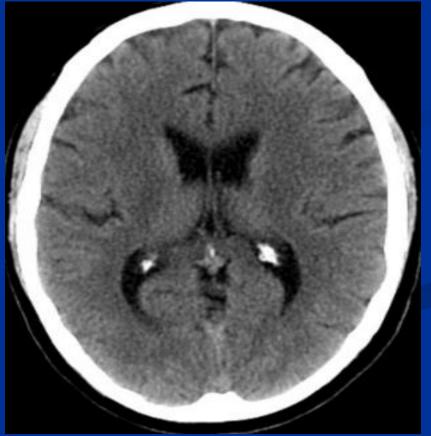
3. Determine the underlying cause if possible.

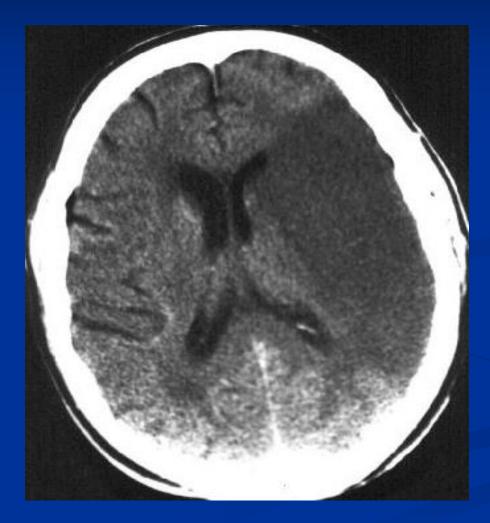
Lesion Localisation

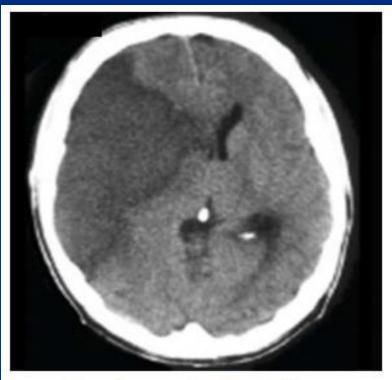
- (a) Pinpoint pupils: opioid intoxication or pontine haemorrhage.
- (b) Mid position light fixed pupils (mesencephalic lesion) in downward compression of the upper brainstem from a hemispheric mass but also often the first sign of loss of all brainstem reflexes (brain death).

Lesion Localisation

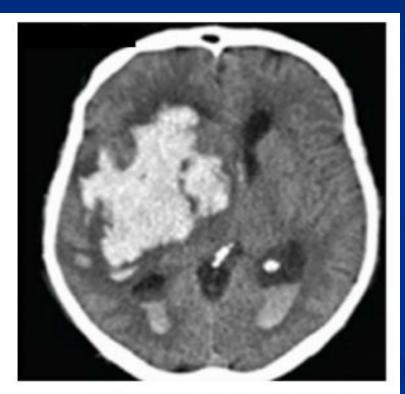
- Roving eye movements indicate that the brainstem is intact.
- Skew deviation of the eyes suggests an acute brainstem injury.
- Horizontal deviation of the eyes to one side might be a sign of non-convulsive status epilepticus but also of an ipsilateral hemispheric or contralateral pontine stroke.

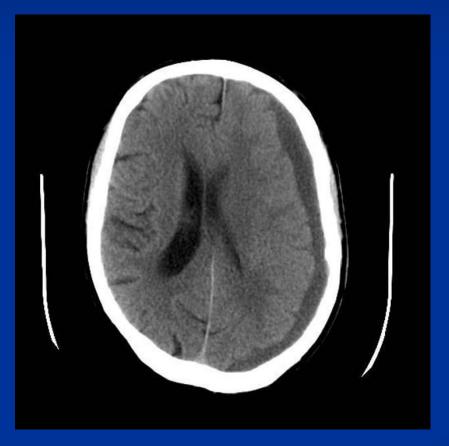

Fig. 13.121 Gaze deviations in cerebral lesions and seizures: the eyes deviate horizontally toward a cortical lesion (left); the eyes deviate horizontally away from a pontine lesion (center); the eyes deviate horizontally away from a cortical seizure focus (right).


What is the cause of coma?

CT and MRI of the brain are very important in the work-up of a comatose patient. However, in many cases of coma, the brain CT may be normal or only show minor subtle findings.



Left Middle Cerebral Artery Infarction with minimal mass effect – level of consciousness probably normal.



Ischemic Stroke (dark/hypodense)

Hemorrhagic Stroke (bright/hyperdense)

Chronic Subdural Hematoma

Acute Subdural Hematoma

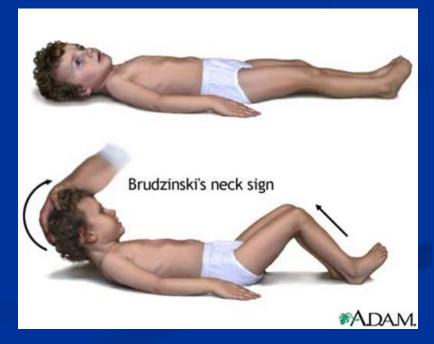
Management of Coma in the First Hour

- Improve oxygenation (face mask with 10 l/min oxygen flow aiming at a pulse oximeter saturation of >95%).
- Intubate if patient cannot protect the airway (ie, pooling secretions, gurgling sounds) or with increased work of breathing.
- Intubate any comatose patient with irregular ineffective respiratory drive and poor oxygenation.
- Intubate any comatose patient with major facial injury or consider emergency tracheostomy.

Management of Coma in the First Hour

- No harm is done if a patient with a high likelihood of hypoglycaemia is immediately given 50 ml of 50% glucose, even before the blood sugar is known (with coadministration of 100 mg thiamine intravenously).
- No harm is done administering naloxone if opioid intoxication is suspected.
- Flumazenil reverses any benzodiazepine toxicity.

Possible CNS Infection ?


- High index of suspicion in immunosuppressed (DM, Cancer, Steroids, Biologics, HIV)
- Acute Bacterial Meningitis
- Viral Encephalitis
- Brain abscess
- Subdural Empyema
- Cerebral Malaria –causes rapidly progressive coma
- **TB** Meningitis

Meningitis: Symptoms and Signs

- Early flu-like symptoms
- Worsening headache (+/- Nausea or vomiting)
- Chills/High fever
- Confusion/irritability/difficulty concentrating/ drowsiness/coma
- Seizures
- Nuchal rigidity and other meningeal irritation signs/Photophobia
- Purpuric skin rash (in meningococcal meningitis)
- May develop rapidly over 1-2 days or slowly over many days, esp. in the elderly or immunosuppressed

Meningeal irritation signs

Acute bacterial Meningitis (ABM)

- Common & serious
- Medical emergency
- 100% curable if treated adequately or 100% fatal
- High index of suspicion important
- Dx by CSF examination

ABM : Etiology

- Streptococcus pneumoniae (pneumococcus)- Most common cause.
- Neisseria meningitidis (meningococcus). This is a highly contagious infection that affects mainly teenagers and young adults. It may cause local epidemics in college dormitories, boarding schools and military bases.
- Listeria monocytogenes These bacteria can be found in unpasteurized cheeses, hot dogs and lunchmeats. Pregnant women, newborns, older adults and immunocompromized people.
 Brainstem involvement is common

ABM

Diagnosis
 High index of suspicion very important
 Confirm by CSF examination
 If LP is contraindicated (Brain CT), start empirical antibiotics on suspicion

 CSF: ↑Pressure, turbid, ↑cells (mostly polymorphs), ↑protein, ↓sugar to < 40% of blood sugar, ↑lactate > 2.4 mmol/l
 Gram stain, culture
 PCR

Treatment for bacterial meningitis

- Ceftriaxone (2g every 12 hrs) or cefotaxime (8–12 g daily, divided doses every 6 h intravenously) +/ Vancomyocin (2 g daily, divided dose every 12 h intravenously)
- Add ampicillin (12 g daily, divided dose every 4 h intravenously +/- Gentamicin if Listeria suspected (age >55 yrs, immunosuppressed)
- Consider intravenous dexamethasone 10 mg x 4 with or just before first dose of antibiotics, and continue for 4 days- benefit in pneumococcal meningitis

Viral meningitis

- Viral meningitis is usually mild and often clears on its own.
- Most cases are caused by a group of viruses known as enteroviruses, which are most common in late summer and early fall.
- Viruses such as herpes simplex virus, HIV, mumps, West Nile virus and others also can cause viral meningitis.

CSF

Table 1 | Typical cerebrospinal fluid (CSF) findings in infectious meningitis^{1 3 14}

White blood cell count (cells/mm3/106 cells/l)	Predominant cell type	CSF: serum glucose (normal ≥0.5)	Protein (g/l) (normal 0.2-0.4)
50-1000	Mononuclear (may be neutrophilic early in course)	>0.5	0.4-0.8
100-5000	Neutrophilic (mononuclear after antibiotics)	<0.5	0.5-2.0
50-300	Mononuclear	(0.3	0.5-3.0
20-500	Mononuclear	(0.5	0.5-3.0
	(cells/mm3/106 cells/l) 50-1000 100-5000 50-300	(cells/mm3/106 cells/l)cell type50-1000Mononuclear (may be neutrophilic early in course)100-5000Neutrophilic (mononuclear after antibiotics)50-300Mononuclear	(cells/mm3/106 cells/l)cell type(normal ≥0.5)50-1000Mononuclear (may be neutrophilic early in course)>0.5100-5000Neutrophilic (mononuclear after antibiotics)<0.5

Encephalitis

Encephalopathy = (altered consciousness persisting for longer than 24 h, including lethargy, irritability or a change in personality or behaviour)

Encephalitis = encephalopathy AND evidence of CNS inflammation, demonstrated by at least two of:

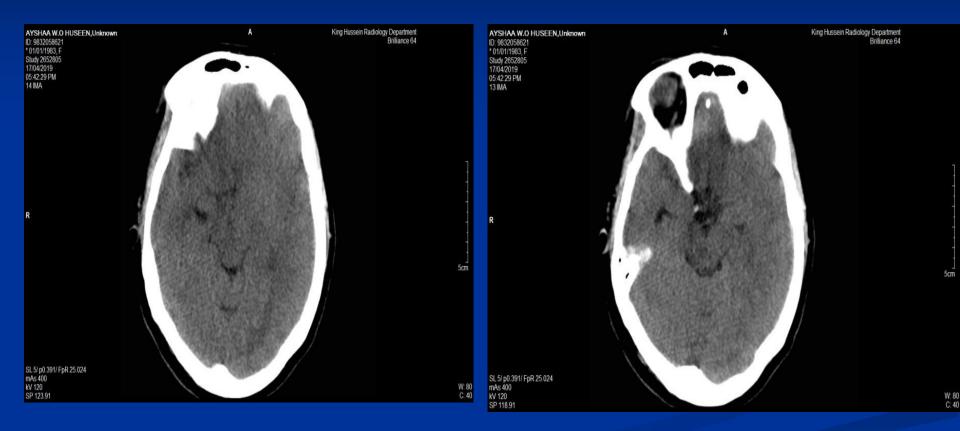
- > fever
- seizures or focal neurological findings attributable to the brain parenchyma
- > CSF pleocytosis (more than 4 white cells per µL)
- > EEG findings suggestive of encephalitis
- > neuroimaging findings suggestive of encephalitis.

Encephalitis

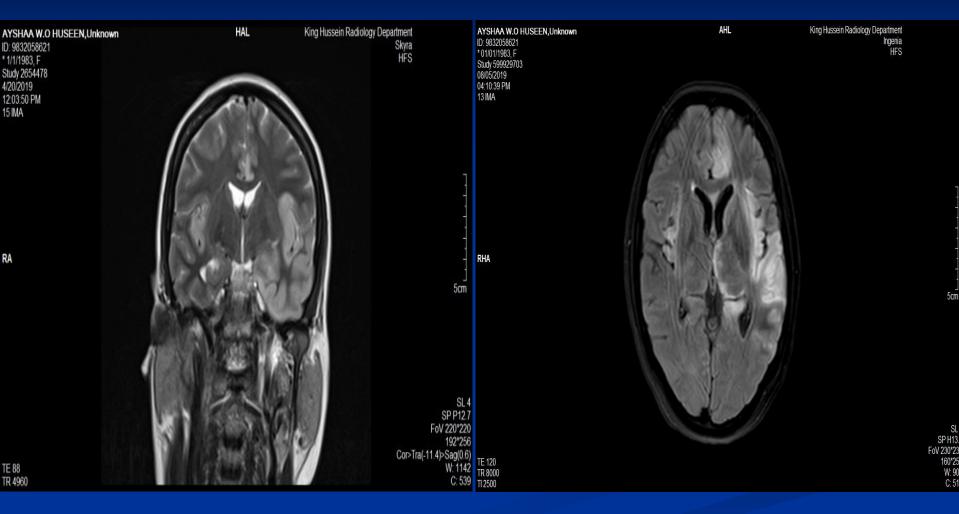
- Encephalitis may be infectious or autoimmune
- Most common cause of sporadic infectious encephalitis is HSV1. Also HSV2 and VZV.
- Many other viruses and bacteria

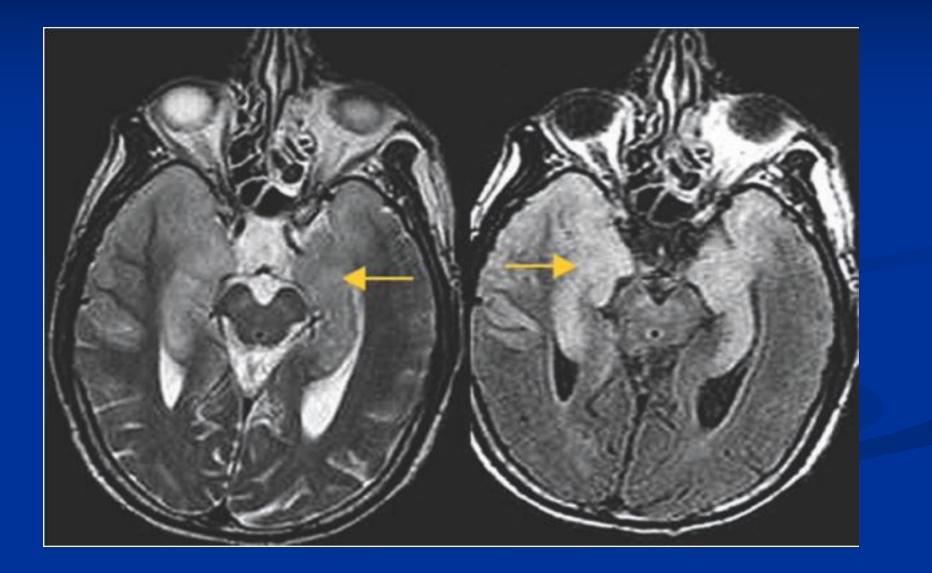
In practice, little distinction may initially be seen between meningitis and encephalitis and the term meningoencephalitis is often used – both covered initially.

Herpes simplex virus encephalitis


- Most cases are caused by HSV1, but around 10% are caused by type 2.
- The most distinctive presenting features are fever, disorientation, aphasia and behavioural disturbances, and up to a third of patients have convulsive seizures.

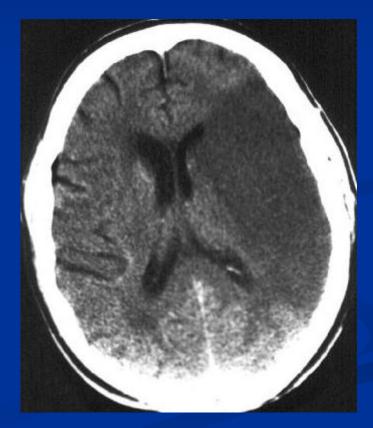
HSV Encephalitis


- Neuroimaging can be negative acutely, but by 48 hours, over 90% of patients have MR brain imaging abnormalities and sensitivity approaches 100% at 3–10 days.
- MRI shows markedly asymmetric but usually bilateral abnormalities in the limbic system, medial temporal lobes, insular cortices and inferolateral frontal lobes
- CSF clear, pleocytosis +/-. Normal or \protein, normal sugar, PCR (may be negative early- repeat after 24-72 hrs)


Prompt Rx with IV aciclovir 10 mg/kg x3 if any suspicion

Brain CT in a case of HSV encephalitis

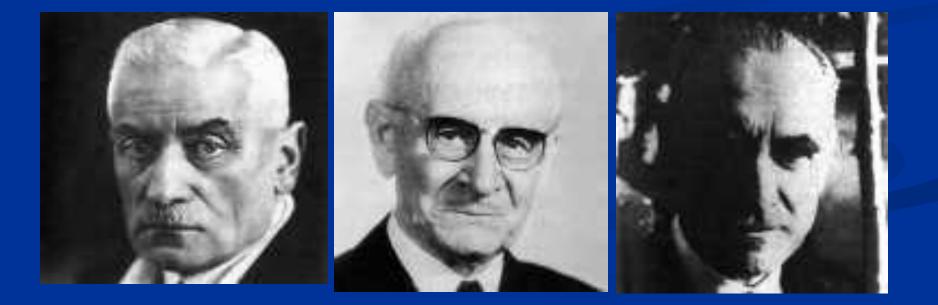
MRI in previous patient.


What is shown on this CT?

Brain Abscess

Ischemic Infarct

Huge Brain abscess with mass effect and hydrocephalus


Short Break

1916- Guillain-Barre Syndrome (GBS)

SUR UN SYNDROME DE RADICULO-NÉVRITE AVEC HYPERALBUMINOSE DU LIQUIDE CÉPHALO-RACHIDIEN SANS RÉACTION CELLULAIRE. REMARQUES SUR LES CARACTÈRES CLINIQUES ET GRAPHIQUES DES RÉFLEXES TENDINEUX.

par MM. GEORGES GUILLAIN, J.-A. BARBÉ et A. STROHL.

Landry's Ascending Paralysis 1859 (Jean-Baptiste Landry) Landry-Guillain-Barre-Strohl Syndrome

Guillain-Barre Syndrome (GBS)

- GBS is an acute immune-mediated radiculo-neuropathy. It is the most frequent cause of acute flaccid paralysis worldwide and constitutes a neurologic emergency
- It shows a pattern of symmetrical "ascending paralysis" in about two thirds of patients, beginning in the lower limbs and then spreading to the upper limbs/trunk/neck/ head. Proximal and distal muscles.
- Hypo/Areflexia
- Sensory (mild) and autonomic symptoms.
- Maximal weakness at 1-2 weeks.
- It can affect the facial muscles (50% of cases), bulbar and respiratory muscles - 25% of patients need artificial ventilation.
- Extraocular muscle weakness /ptosis uncommon

Differential diagnosis of acute flaccid paralysis

Brainstem stroke/ encephalitis

Acute myelopathy

- •Spinal cord infarction/haemorrhage
- •Acute transverse myelitis
- Acute poliomyelitis

Peripheral neuropathy

•Guillain-Barré syndrome

- •Diphtheritic neuropathy
- •Heavy metals (thallium)
- •Acute intermittent porphyria
- •Vasculitic neuropathy
- •Lymphomatous neuropathy

Differential diagnosis of acute flaccid paralysis

Disorders of neuromuscular transmission

- Myasthenia gravis
- Botulism

Disorders of muscle

•Hypokalaemia / Periodic paralyses

- •Hypophosphatemia
- •Inflammatory myopathy
- •Acute rhabdomyolysis

Investigations

- CSF Albumino-cytological dissociation
- NCS Demyelinating neuropathy (AIDP) >> Axonal (AMAN, AMSAN)
- Spine MRI and blood work-up (K/P/other electrolytes, CPK ...) to exclude other diagnoses

GBS vs. Acute Transverse Myelitis

Clinical feature	GBS	TM
Onset of paralysis	Hours to 4 weeks	Within 4 days
Motor findings	Ascending weakness	Para paresis or quadriparesis
Sensory findings	Ascending sensory	Spinal cord levels
Autonomous findings	CVS	Bladder and bowel
Cranial nerves	EOM palsies or facial weakness	None
CSF	Pleocytosis uncommon, raised protein	Pleocytosis Common, protein normal
MRI	Normal	Focal abnormalities

GBS triggers

Infections

Two thirds of cases are associated with an infection a few weeks before the onset of neurological symptoms. The spectrum varies depending on geographical location, and includes:

- Campylobacter jejuni
- Cytomegalovirus
- Epstein-Barr virus
- Mycoplasma pneumoniae / ? Haemophilus influenzae
- Influenza/ ? COVID-19
- Hepatitis E
- HIV seroconversion (High CSF cell coumt)
- Postpartum
- Surgery
- Vaccinations ??

GBS treatment- Immunotherapy

IVIg (0.4 g/kg daily for 5 days) or
Plasma exchange (4-5 sessions)

Supportive Management for possible complications

- Careful monitoring of vital capacity (VC) with intubation for those with a VC of <15 ml/kg or which is rapidly dropping
- Twenty five per cent of GBS patients require ventilatory support during their illness, which may be predicted if there is rapid progression of limb weakness, facial or bulbar weakness or dysautonomia .
- Cardiac monitoring for possible arrhythmias throughout the acute stages .
- Venous thromboembolism prophylaxis with compression stockings and low molecular weight heparin is recommended for non-ambulant patients

GBS

56 yr old male Previously fit and well

- 4 week history of
- Diplopia horizontal
- Variable through the day
- Struggling with drinks- leaking from mouth
- Slurred and low volume speech

Admitted to hospital

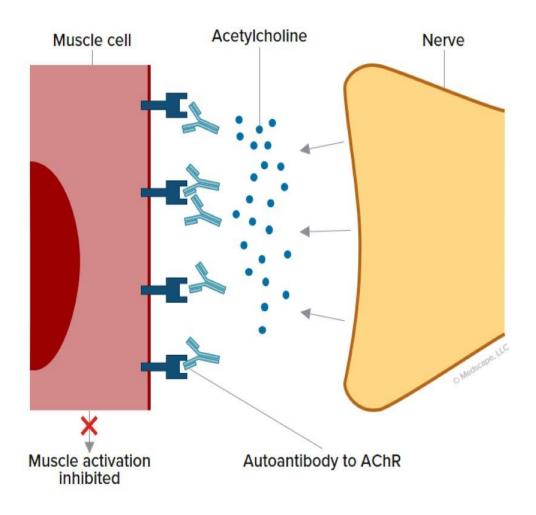
Diagnosis?

Whilst in hospital

- Weakness of neck- head drop
- Weakness of arms: SAD/ WE, FE)
- Difficulty breathing, but CXR normaltaken to the ICU
 - Low FVC, VC and borderline PEFR
 - Needed ICU as tiring, confused
- Noted to using accessory muscles and accessory muscle use

Exam

- Ptosis
- Complex ophthalmoplegia
- Facial weakness
- Fatiguable dysarthria
- Neck flex/ext weakness
- Fatiguable UL weakness
- Intact reflexes
- Normal sensory exam


MRI Brain normal

Myasthenia gravis

gMG Pathophysiology

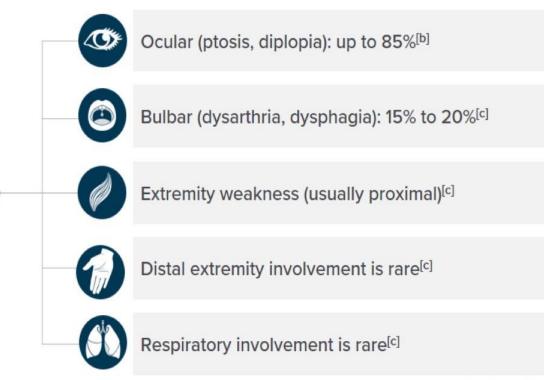
Autoimmune NMJ Disorder

Characteristic muscle weakness is caused by pathogenic autoantibodies that bind to components of the NMJ^[a]

Myasthenia Gravis

Epidemiology

- Prevalence: 2-14/100,000
- Two peaks: 2nd/3rd & 6th/7th decade
- Rarely familial


Presentation

- Ocular: diplopia, ptosis (50-60%)
- Bulbar or limb weakness (30-35%)
- Respiratory failure: rare as a presenting sx

Myasthenia gravis

Clinical Presentation (cont)

Clinical hallmark: fluctuating, pronounced, fatigable weakness limited to the voluntary muscles^[a]

© WebMD Global, LLC

MG: Weakness-1

 Variable: worsens with physical activity and improves with rest; worse at the end of the day

Ocular

- Ptosis and/or diplopia
- Usually asymmetric
- Normal Pupils
- **Facial:** very common
- Bulbar
 - Dysarthria; weak mastication
 - Abnormal gag reflex; weak palate, tongue
- Respiratory
 - Weak diaphragm and intercostals: SOB, weak cough, decreased counting/one breath
 - May result from vocal cord paralysis

MG: Weakness-2

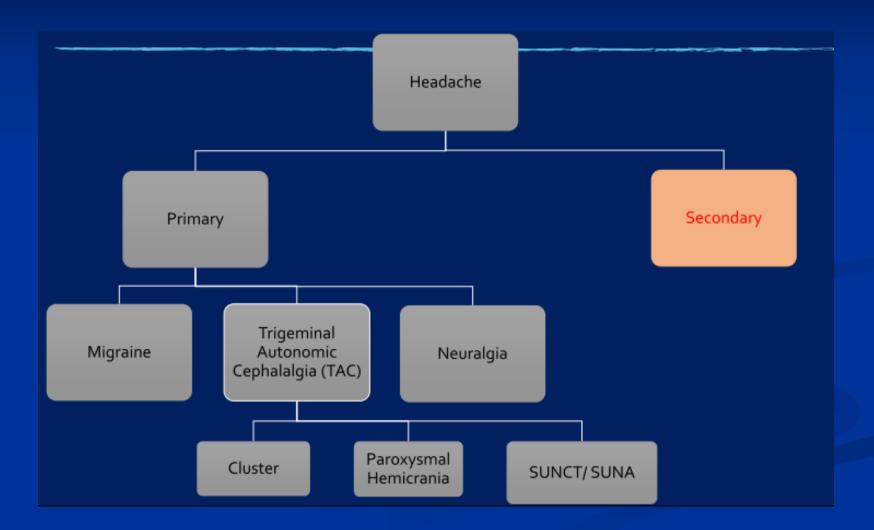
- Neck: Extensors weakness (head droop)
- Limb weakness
 - Proximal > distal
 - Arms > legs
 - Usually symmetric
 - Predilection for certain muscles: triceps, quadriceps
 - Limb-girdle myasthenia (limited to limbs, 2%)

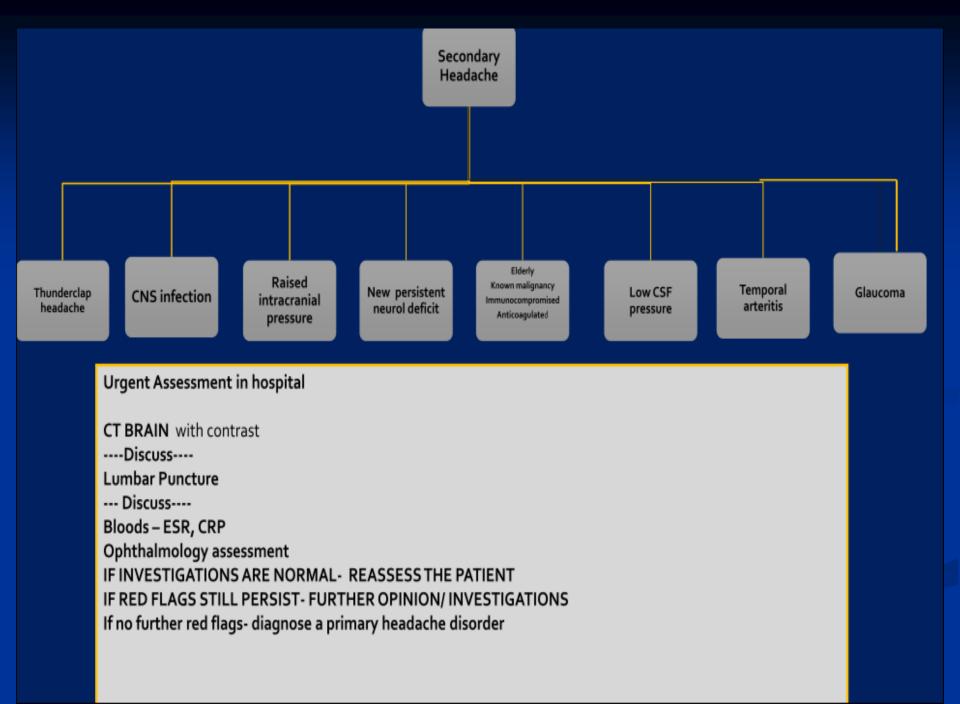
MG: investigations

The orbital Ice TestIV Edrophonium Test ??

Serum Autoantibodies

- Anti-Acetylcholine Receptor antibodies
- Anti-Muscle-Specific Kinase (MuSK) antibodies
- Anti-striational antibodies
- New antibodies
- Electrophysiological tests
 - Repetitive Nerve Stimulation
 - Single Fiber EMG
- CT scan of the chest for thymoma or thymmic hyperplasia
- Search for other autoimmune diseases: thyroid disease, B12 deficiency, collagen vascular disease


Anti-Acetylcholine Receptor (AChR) antibodies


- Detectable in 85% 90% of generalized MG and 50% of ocular MG
- Rare in normal population: < 1%</p>
- Level correlates with disease status in the individual patient

MG Treatment

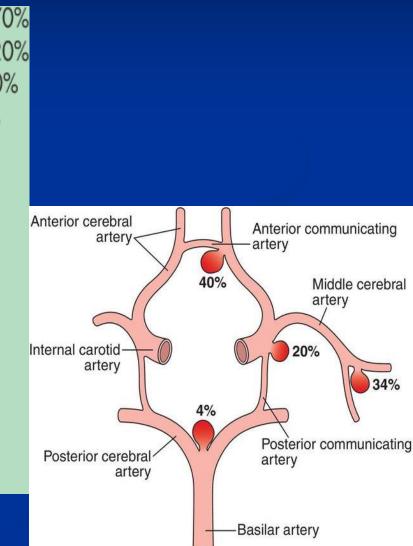
- Myasthenic crisis Rx (IVIg or PE)
- Long-term Rx
 - Oral steroids/immunosuppressives
 - Acetylcholinesterase inhibitors
 - Thymectomy
 - Rituximab and new monoclonals

Headache

SNNOOP10

	Sign or symptom	Related secondary headaches (most relevant ICHD-3b categories)
1	Systemic symptoms including fever	Headache attributed to infection or nonvascular intracranial disorders, carcinoid or pheochromocytoma
2	Neoplasm in history	Neoplasms of the brain; metastasis
3	Neurologic deficit or dysfunction (including decreased consciousness)	Headaches attributed to vascular, nonvascular intracranial disorders; brain abscess and other infections
4	Onset of headache is sudden or abrupt	Subarachnoid hemorrhage and other headaches attributed to cranial or cervical vascular disorders
5	Older age (after 50 years)	Giant cell arteritis and other headache attributed to cranial or cervical vascular disorders; neoplasms and other nonvascular intracranial disorders
6	Pattern change or recent onset of headache	Neoplasms, headaches attributed to vascular, nonvascular intracranial disorders
7	Positional headache	Intracranial hypertension or hypotension
8	Precipitated by sneezing, coughing, or exercise	Posterior fossa malformations; Chiari malformation

SNNOOP10

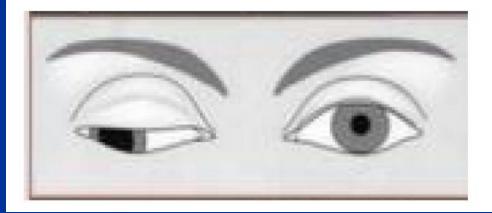

9	Papilledema	Neoplasms and other nonvascular intracranial disorders; intracranial hypertension
10	Progressive headache and atypical presentations	Neoplasms and other nonvascular intracranial disorders
11	Pregnancy or puerperium	Headaches attributed to cranial or cervical vascular disorders; postdural puncture headache; hypertension-related disorders (e.g., preeclampsia); cerebral sinus thrombosis; hypothyroidism; anemia; diabetes
12	Painful eye with autonomic features	Pathology in posterior fossa, pituitary region, or cavernous sinus; Tolosa-Hunt syndrome; ophthalmic causes
13	Posttraumatic onset of headache	Acute and chronic posttraumatic headache; subdural hematoma and other headache attributed to vascular disorders
14	Pathology of the immune system such as HIV	Opportunistic infections
15	Painkiller overuse or new drug at onset of headache	Medication overuse headache; drug incompatibility

Thunderclap Headache

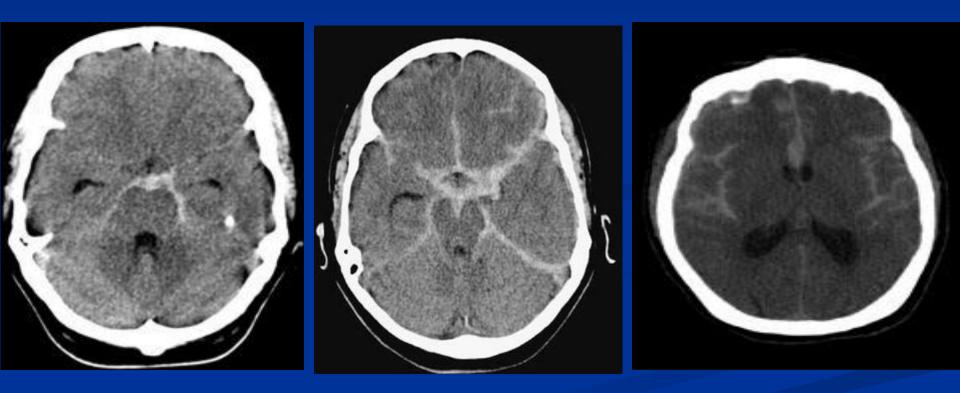
Very severe, maximal severity at onset
Feels like being "hit on the head with a bat"
Commonly occipital
25% associated with Subarachnoid hemorrhage

Subarachnoid hemorrhage Non-traumatic causes

Intracranial aneurysms: degenerative 60-70% Peri-mesencephalic haemorrhages 15-20% Arteriovenous malformations and associated aneurysms 5-10% Other causes: ~ 5% Dural fistula Venous vascular abnormalities Spinal arteriovenous malformations Cerebral artery dissections Moyamoya syndrome Vasculopathies Mycotic aneurysms Coagulopathies Neoplasia Pituitary apoplexy Drug abuse: amphetamine and cocaine

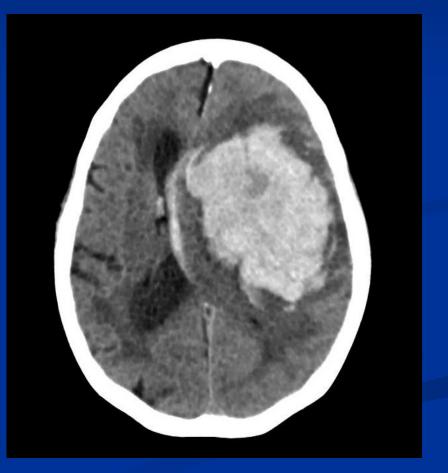

Classic Symptoms of Subarachnoid Hemorrhage

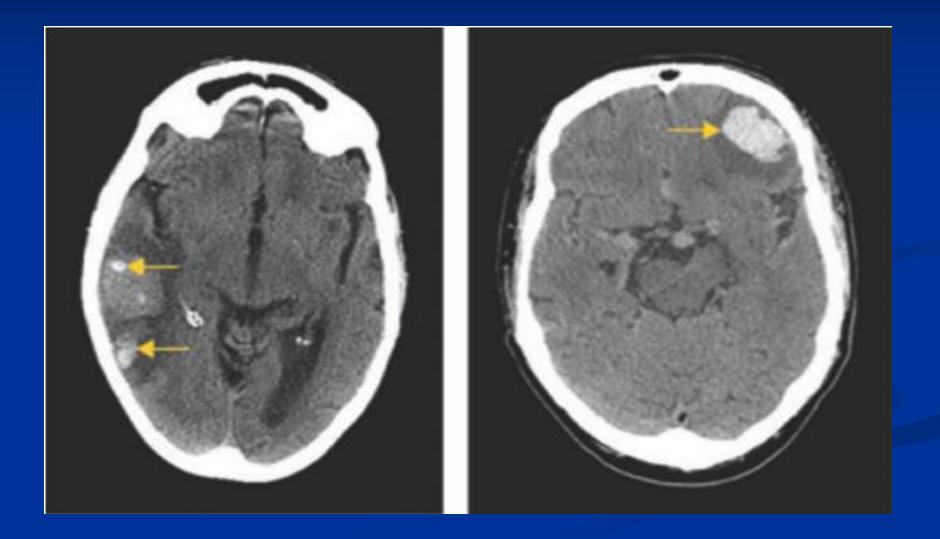
Sudden, unusually severe or "thunderclap" headache
Loss of consciousness (transient or persistent if severe)
Pain in neck, back, eye
Nausea, vomiting, photophobia


Classic Signs of Subarachnoid Hemorrhage

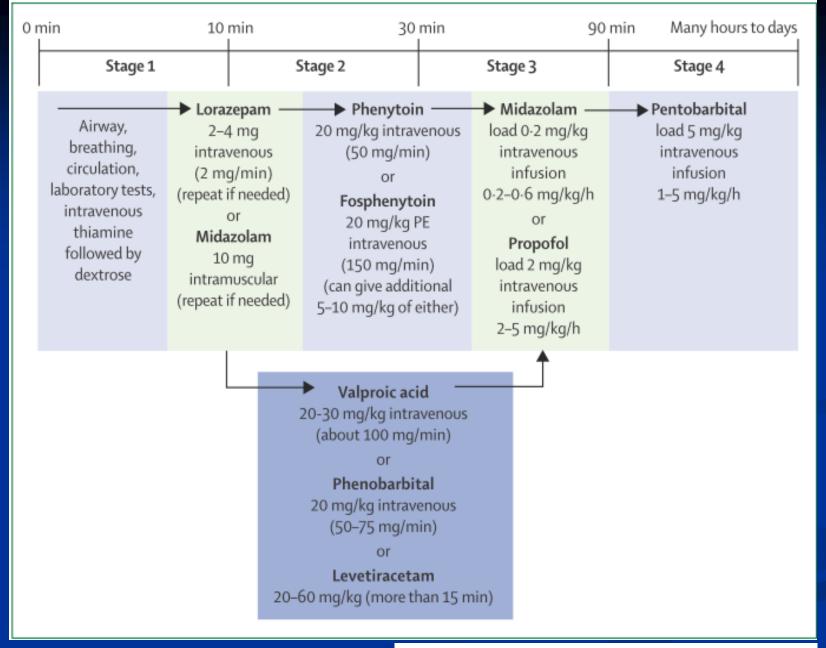
Abnormal vital signs

- Respiratory changes, hypertension, cardiac arrhythmias
- Meningism
- Focal neurologic signs may be present
 - III nerve palsy IC/PCA aneurysm
 - Paraparesis ACA aneurysm
 - Hemiparesis, aphasia MCA aneurysm
- Ocular hemorrhages


Subarachnoid hemorrhage


Subarachnoid hemorrhage

Intracerebral parenchymal hemorrhage


Cerebral Venous Thrombosis (CVT) with hemorrhagic infarctions – Rx ?

Seizures, Pseudo-seizures and Status Epilepticus

Definition of Status Epilepticus

If the patient has a prolonged (>5 min.) seizure or repetitive (3 or more/hr) seizures without recovery between episodes, they are considered to be in SE and the Rx protocol initiated.

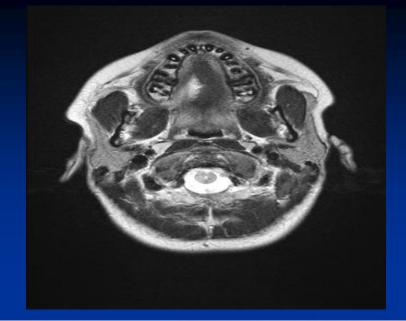
Status epilepticus in adults

Lancet Neurol 2015

John P Betjemann, Daniel H Lowenstein

Box 1: Mimics of generalised convulsive status epilepticus

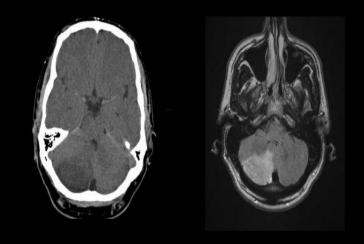
- Psychogenic status epilepticus
- Decerebrate spasms
- Tetanus
- Malignant hyperthermia
- Malignant neuroleptic syndrome
- Paroxysmal dyskinesia
- Acute chorea, ballismus, dystonia


Clinical distinction of dissociative non-epileptic attacks ("pseudoseizures") from epileptic seizures

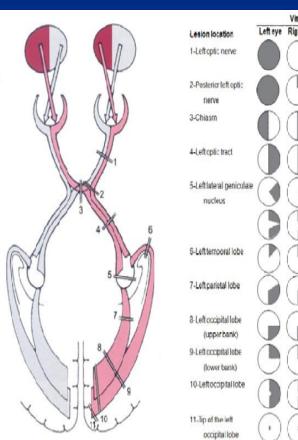
	Dissociative non-epileptic seizures ("pseudoseizures")	Epileptic seizures
Induced by anger, panic, suggestion	Common	Rare
Onset	Often gradual	Usually sudden
Duration	Often prolonged, occasionally hours	1–3 minutes
Breathing and colour	Breathing continues, stays pink	Usually apnoeic and cyanosed
Retained consciousness	Common	Uncommon
Pelvic thrusting, back arching, erratic movements	Common	Rare
Fighting, held down, may injure others	Common	Rare
Eyes closed	Common	Less common
Resisting eye opening and eye contact	Common	Rare
Occur only in company	Common	Rare
Lateral tongue bite	Rare (minor)	Common
Self injury	Rare	Common (occasionally serious)
Incontinence	Rare (occasionally with experience)	Common
Post-ictal confusion	Rare	Common

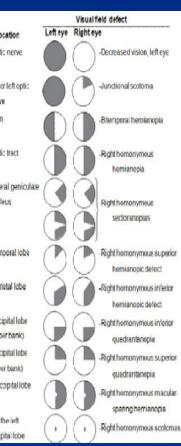
Back arching in Pseudoseizures

 Lateral tongue biting is poorly sensitive but highly specific (99%) for a generalized seizure.

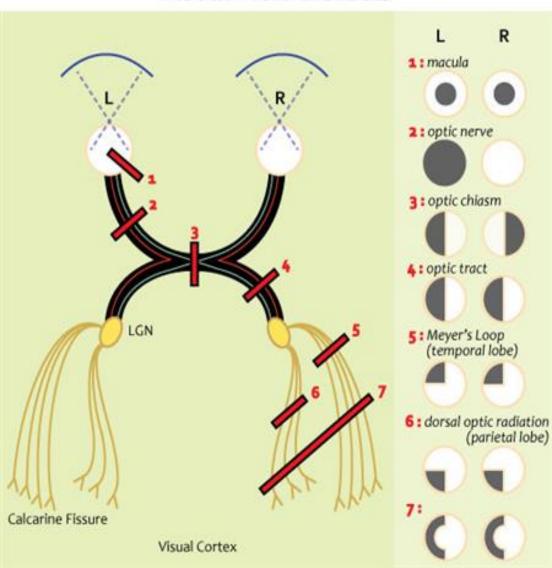


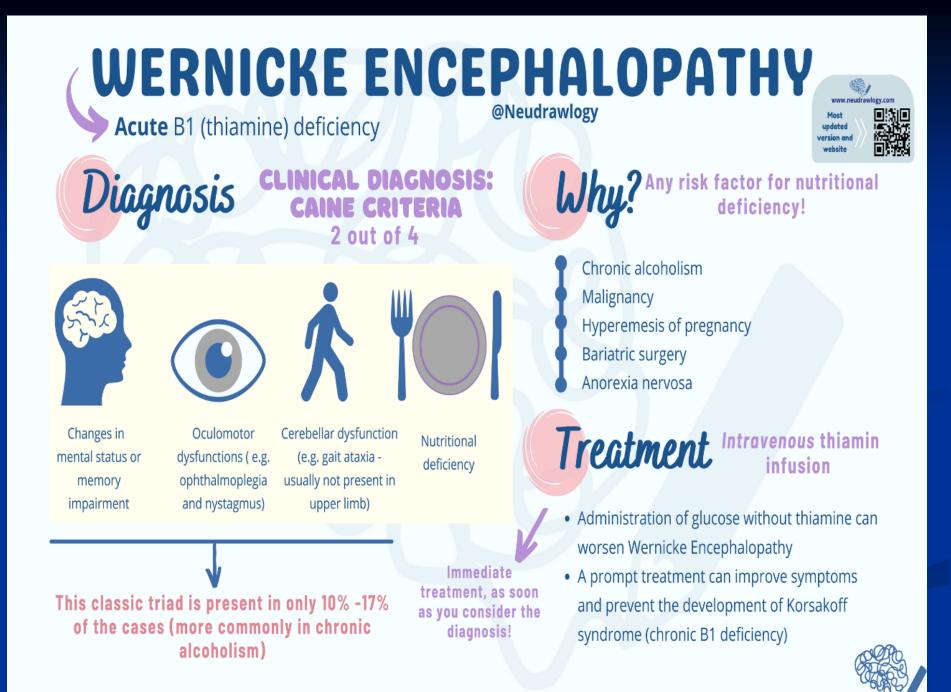
(c) 2012 AMERICAN ACADEMY OF NEUROLOGY - MID'

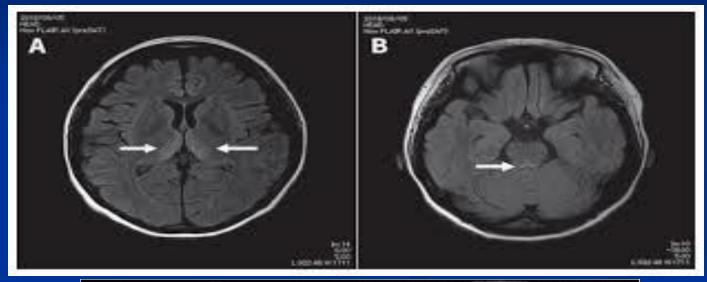

Vertigo

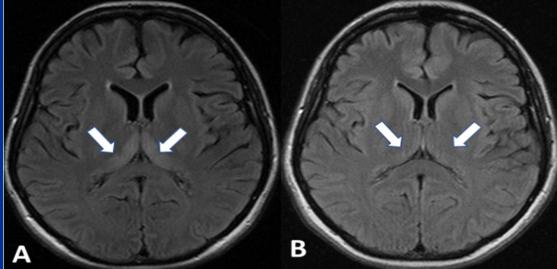

- No Loss of consciousness (not syncope)
- Acute-onset persistent vertigo lasting hours-few days, think of:
 - Cerebellar stroke (Red flags)
 - Vestibular neuritis
- If recurrent prolonged attacks-Vestibular migraine

- Acute vertigo middle age man
- Headache Red flag!
- Normal head thrust Red flag!!




Anatomy of Visual Pathways





Delay in the diagnosis and treatment of Wernicke's Encephalopathy may lead to death or dementia in survivors (Korsakoff's psychosis)

