

Pain

DEPARTMENT OF ANESTHESIA AND INTENSIVE CARE .

PROF.DR. ABDELKARIM ALOWEIDI AL-ABBADI

THE UNIVERSITY OF JORDAN 2023

Learning Objectives

- Definition of Pain.
- The basic anatomy and physiology involved in pain transmission.
- Nociceptive and Neuropathic pain.
- History, Examination and Pain Assessment.
- Use of Opioids for Pain in acute condition.

Definition

- IASP, July 2020: Unpleasant sensory and emotional experience associated with -or resembling that associated with- actual or potential tissue damage caused by injury or illness
- 1. Pain is always a personal experience. Influenced by biological, psychological, and social factors.
- 2. A person's report of an experience as pain should be respected.
- 3. Pain has adverse effects on function and social and psychological well-being.
- 4. Verbal description is only one of several behaviors to express pain; inability to communicate does not negate that a human experiences pain.

Basic Terms

- Noxious: unpleasant.
- Noxious stimulus: A stimulus that is damaging or threatens damage to normal tissues.
- Nociceptor: A high-threshold sensory receptor of the peripheral somatosensory nervous system that is capable of transducing and encoding noxious stimuli.
- Nociception: The neural process of encoding noxious stimuli.
- Nociceptive pain: Pain that arises from actual or threatened damage to non-neural tissue and is due to the activation of nociceptors.
- Neuropathic pain: Pain caused by a lesion or disease of the somatosensory nervous system. (peripheral vs central).

Classification

There are several ways of classifying pain:

- By <u>duration</u> (acute (<12 weeks) vs chronic (> 12 weeks))
- By the <u>underlying mechanism</u> (nociceptive vs neuropathic) (sometimes mixed)
- By the physical origin (visceral vs somatic, referred pain)
- By its <u>underlying cause</u> (cancer, inflammatory, post-operative, mechanical pain)

Types of pain

Nociceptive pain

Somatic:

Sharp (somatic)

Throbbing

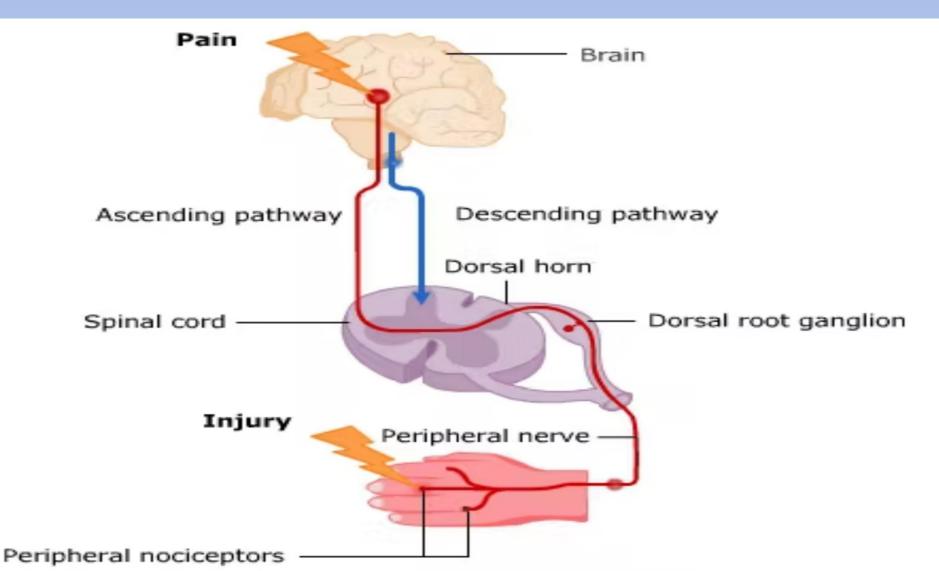
Ache

Localized to injury site

Visceral:

Dull, Cramping, Colicky Poorly localized

Neuropathic pain


History of peripheral/central nerve damage

Systemic disease ex. DM

Poorly localized Burning, shooting, crawling, electric shocks

Spontaneous and paroxysmal +/- paraesthesia, loss of sensation, weakness Responds poorly to opioid.

Anatomy of pain

Physiology of Pain

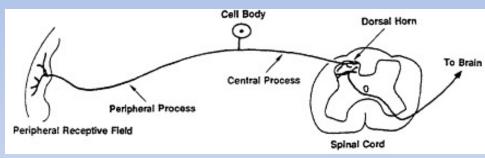
• 4 major processes:

Transduction

Transmission

Modulation

Perception


Transduction

- The processes by which tissue-damaging stimuli activate nerve endings (generating action potential) transmitted by C fibers and Adelta fibers.
- Mechanical (pressure, pinch), Heat, or Chemical.
- ATP, Bradykinin, PGE2, Na+, K+, H+, Serotonin → receptors → depolarize the cell membrane.
- Inflammation: TNF-alpha, IL-1B, IL-6, NGF → further activates C and A-delta fibers.

Transmission

• Peripheral Nervous System: AP is propagated to the CNS by the

primary afferent neuron.

- Central Nervous System: 1st neuron will synapse with 2nd neuron in the dorsal horn of the spinal cord at Rexed laminae I and II.
 - Neurotransmitters: Substance P, Glutamate, and CGRP.
 - Receptors: AMPA, NMDA, and GPCR.

Perception and Modulation

- Perception: The subjective awareness produced by sensory signals; it involves the integration of many sensory messages (biopsychosocial) into a coherent and meaningful whole (brain process to decide if its pain or not).
- Modulation: adjustment of sensory signals to try and reduce the activity in the ascending pathways (mainly by action of descending pathways) (defense mechanism).
 - Endogenous opioids, serotonin, and Noradrenalin.

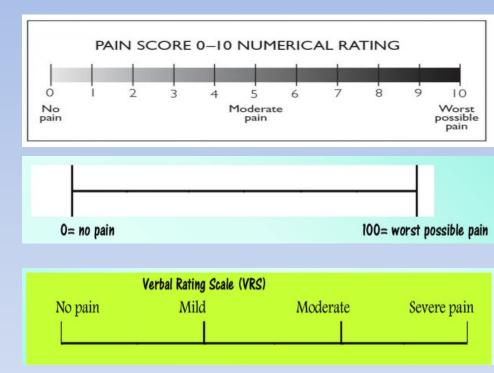
ACUTE PAIN

Acute pain

- Pain caused by noxious stimulation from injury, a disease process, and usually lasts less than 6 months (some use 3 months).
- Alarm system, survival.
- Nociceptive: somatic: superficial (sharp, more localized)/ deep(less sharp (ache), less localized)

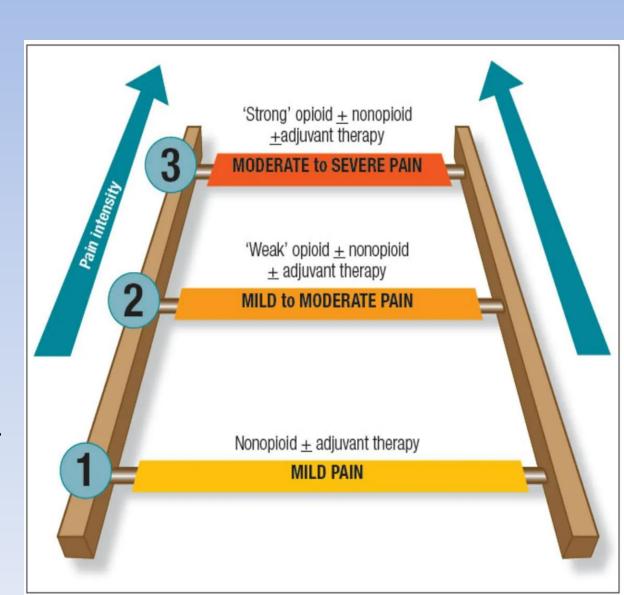
visceral: diffuse, referred pain

Systemic response to acute pain


- Adversely affect perioperative morbidity and mortality
- Cardiovascular: Hypertension, tachycardia, enhanced myocardial irritability, may precipitate myocardial ischemia.
- **Respiratory:** Increase total body O2 consumption and CO2 production.
- Gastrointestinal and urinary: Ileus and urinary retention.
- Endocrine: Increases catabolic hormones (catecholamines, cortisol, and glucagon) and decreases anabolic hormones.

Taking a Patient History

- Location?
- What is the character of the pain (what does it feel like)?
- Onset? Abrupt vs. gradual
- Duration?
- Known cause? Ex. trauma?
- Relieving and aggravating factors?
- Pattern? Better or worse at a particular time of day/month?
- Constant vs. intermittent?
- Does it vary with position?
- Medications? Effectiveness of medications?


Assessment

- Pain Measurement (adults)
 - Numerical rating scale (NRS)
 - Visual analog scale (VAS)
 - Verbal rating scale (VRS)

Treatment of Acute Pain

- Physical therapy and exercises
- Simple measures: ex.
 applying heat cold
- Electrical stimulation
- Acupuncture.
- Pharmacological
- WHO analgesic ladder Paracetamol, NSAIDs,
 Opioids, adjuvant meds.

Oral Analgesia & Post Operative Nausea & Vomiting

Adult Oral Analgesic Step Ladder (Acute Pain)

Raigmore Hospital

Opioid

Paracetamol
1g 4 times a day
regularly
reduce dose to
15mg/kg if <50kg

If no contraindications
Add NSAID

Ibuprofen 400 mg 3 times a day OR Naproxen 500mg twice a day if required

PLUS

Paracetamol

Tramadol MR 100mg twice a day and 50mg, 6 hourly PRN (Max. PRN 200mg in 24hours)

Add Opioid

PLUS

NSAID

PLUS

Paracetamol

STOP tramadol
START Oramorph
10 or 20 mg
1 hourly
as required OR
oxycodone 5 or
10mg 2 hourly

PLUS

NSAID

PLUS

Paracetamol

Mild Pain Increasing Pain Severe Pain

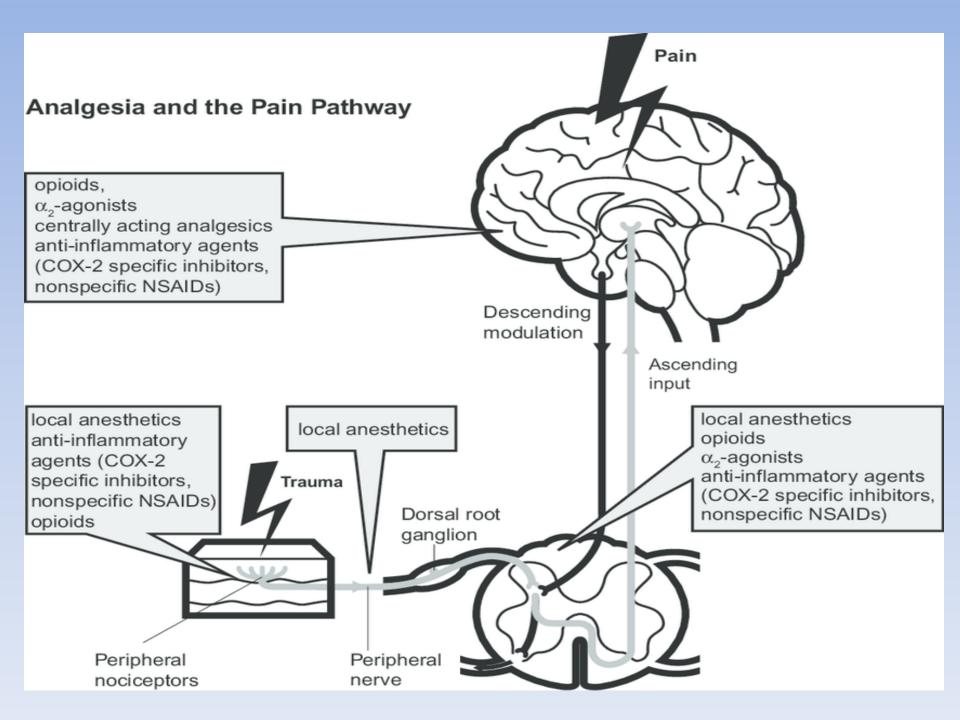
- IV paracetamol should be used when the patient is not reliably absorbing fluids.
- For patients at risk of respiratory despression, consider tramadol in preference to morphine.
- Patients with severe pain require parenteral opioids. Use PCA or the subcutaneous algorithm.

Responsibility: Acute Pain Team

Last update : Oct 2018 Review date : Oct 2020

Medical Illustration. November 2018-00247

PCA



Regional Anesthesia (nerve blocks)

Peripheral and neuraxial nerve blocks.

 Uses local anesthetics and steroids +/adjuvants (ex. Ketamine, clonidine)

Upper Extremity PNBs	Lower Extremity PNBs	Truncal Blocks	
Cervical paravertebral	Subgluteal sciatic Thoracic paravertel		
Interscalene	Femoral	Transverse abdominis plane	
Interscalene	Popliteal	Ilioinguinal	
Infraclavicular	Saphenous		
Axillary	Ankle		

OPIOIDS

Opioid (narcotics)

- Opioids are main pain killers in acute postoperative pain (moderate to severe).
- Medications for analgesia intraoperatively.
- There is evidence to suggest that as long ago as 3000 BC the opium poppy, *Papaver somniferum*, was cultivated for its active ingredients.
- Morphine is commonly considered to be the archetypal opioid analgesic and the agent to which all other painkillers are compared.

Opioids in a nutshell

BOX 31-1 Classification of Opioid Compounds

NATURALLY OCCURRING

Morphine

Codeine

Papaverine

Thebaine

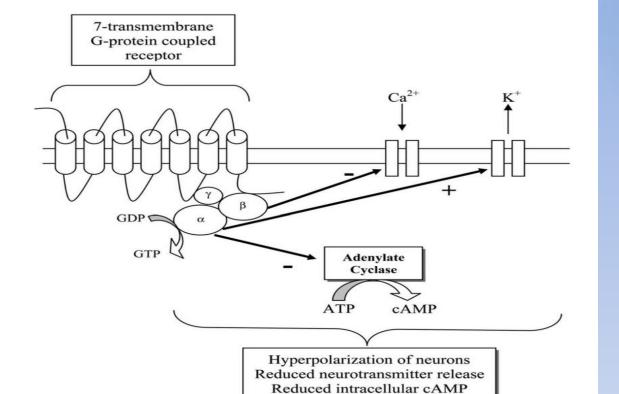
SEMISYNTHETIC

Heroin

Dihydromorphone, morphinone

Thebaine derivatives (e.g., etorphine, buprenorphine)

SYNTHETIC


Morphinan series (e.g., levorphanol, butorphanol)

Diphenylpropylamine series (e.g., methadone)

Benzomorphan series (e.g., pentazocine)

Phenylpiperidine series (e.g., meperidine, fentanyl, sufentanil,

alfentanil, remifentanil)

Opioids receptors

Current NC-IUPHAR- Recommended Nomenclature ¹	Previous Nomenclature	Presumed Endogenous Ligands
μ, mu, or MOP	OP ₃	β-endorphin (not selective) enkephalins (not selective) endomorphin-1 ² endomorphin-2 ²
δ, delta, or DOP	OP ₁	enkephalins (not selective) B-endorphin (not selective)
κ, kappa or KOP	OP ₂	dynorphin A dynorphin B α-neoendorphin
NOP	OP ₄	nociceptin/orphanin FQ (N/OFQ)

Receptor	Clinical Effect	Agonists	
μ	Supraspinal analgesia (μ ₁) Respiratory depression (μ ₂) Physical dependence Muscle rigidity	Morphine Met-enkephalin² β-Endorphin² Fentanyl	
K	Sedation Spinal analgesia	Morphine Nalbuphine Butorphanol Dynorphin ² Oxycodone	
δ	Analgesia Behavioral Epileptogenic	Leu-enkephalin² β-Endorphin²	
σ	Dysphoria Hallucinations Respiratory stimulation	Pentazocine Nalorphine Ketamine	

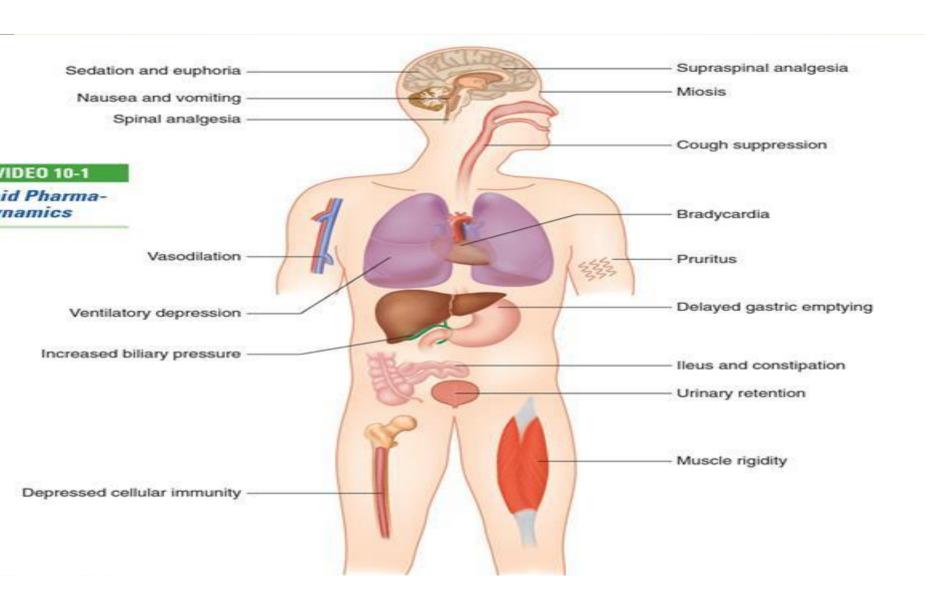
Effect on body systems

Miosis due to parasympathetic system activation

Purities (Itching)

Bradycardia except for meperidine

Histamine release


Vomiting and constipation

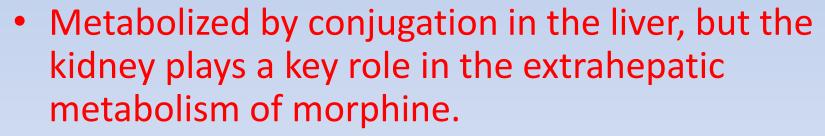
Respiratory depression

<u>Hypercapnic</u> responses	1
hypoxic ventilatory drive	1
ETCO2	1
RR *************	111
Tidal Volume	1

Tolerance to opioids

- Tolerance develop most likely after long term use of opioids but can occur after short term use only.
- Tolerance to opioids might lead to hyperalgesia!!!!!!!
- Minimal tolerance to constipation

TABLE 31-5 PHYSICOCHEMICAL AND PHARMACOKINETIC DATA OF COMMONLY USED OPIOID AGONISTS


	Morphine	Fentanyl	Sufentanii	Alfentanll	Remlfentanll
pK _a % Un-ionized at pH 7.4 Octanol/H ₂ O partition coefficient % Bound to plasma protein Diffusible fraction (%) t _{½α} (min) t _{½β} (min) t _{½γ} (hr) Vd _c (L/kg) Vd _{ss} (L/kg) Clearance (mL/min/kg) Hepatic extraction ratio	8.0	8.4	8.0	6.5	7.1
	23	<10	20	90	67?
	1.4	813	1778	145	17.9
	20-40	84	93	92	80?
	16.8	1.5	1.6	8.0	13.3?
	1-2.5	1-2	1-2	1-3	0.5-1.5
	10-20	10-30	15-20	4-17	5-8
	2-4	2-4	2-3	1-2	★0.7-1.2
	0.1-0.4	0.4-1.0	0.2	0.1-0.3	0.06-0.08
	3-5	3-5	2.5-3.0	0.4-1.0	0.2-0.3
	15-30	10-20	10-15	4-9	★30-40
	0.6-0.8	0.8-1.0	0.7-0.9	0.3-0.5	★NA

Morphine

Onset: 1-2 min (IV)

Peak effect: 30min

- M6G accounts for nearly 10% of morphine metabolite and is a more potent μ-receptor
- Renal dysfunction

Fentanyl

Potency = 100x.

Duration of 30-60 min after single IV injection

Norfentanyl, the primary metabolite

 Anesthetic induction is usually achieved by combining a loading dose of fentanyl (2 to 6 µg/kg) (6 is usually in cardiac anesthesia).

Alfentanil

Faster onset than fentanyl.

Less potent than fentanyl (5-10x less).

Used for sedation in ICU in Europe.

Sufentanil

• is twice as lipid soluble as fentanyl and is highly bound (93%) to plasma proteins, including $\alpha 1$ -acid glycoprotein.

 More potent than fentanyl (10-12x of fentanyl).

Remifentanil

- Remifentanil is structurally unique because of its ester linkages.
- Remifentanil's ester structure renders it susceptible to hydrolysis by blood- and tissue-nonspecific esterases that results in rapid metabolism and rapid reduction of blood concentrations after cessation of infusion
- Associated with emergence from remifentanil anesthesia, the need for alternative analgesic therapies should be anticipated, and these medications should be administered in a timely fashion.
- Remifentanil is not a good substrate for pseudocholinesterase and therefore is not influenced by pseudocholinesterase deficiency
- Main opioid for sedation in ICU in Jordan.

Routes of administartion

Orally: Morphine, Buprenorphine (high first pass effect)

Transdermal: Fentanyl

Transmucosal: Buprenorphine, fentanyl

Epidural: Morphine, fentanyl

OPIOID ANTAGONISTS

- Clinically, opioid antagonists are used to reverse:
- 1- respiratory depression
- 2- nausea and vomiting,
- 3- pruritus,
- 4- urinary retention
- 5- rigidity
- 6- biliary spasm

NALOXONE

- Side effects (increases in heart rate and blood pressure), pulmonary edema)
- The onset of action of intravenous naloxone is rapid (1 to 2 minutes), and t½ and duration of effect are short, approximately 30 to 60 minutes.
- Recurrence of respiratory depression after naloxone results from the short t½ of naloxone

Thank you