Pleural Disease

Tarek Gharibeh MD,FCCP,DABSM

Pleural physiology

- Pleural fluids ~0.3cc/kg
- Produced by mesothelial cell
- Production at the upper part of the pleura and absorption at the diaphragmatic and mediastinal surfaces of the pleura
- The flow rate can increase to pleural fluid filtration
- 10% increase in flow , pleural fluid increase by 15%

Question

Which of the following statements is not correct in regards to pleural physiology?

- A. Approximately 0.3ml/kg body mass of pleural fluid is normally in the pleural space
- B. Lymphatics course through the visceral pleura to drain the pleural space
- C. Alveolar pressure = atmospheric pressure when lungs expanded
- D. Pleural lymphatic flow mostly localized to diaphragm & mediastinal surfaces

Pleural diagnostics

- Chest x ray can detect pleural fluid once more than 250 cc
- Lower volumes can be detected in lateral decubitus
- Lung US can detected very small amount of pleural fluids
- CT chest with contrast is useful to help plan for surgery, look for pleural thickening

Mechanism of pleural collection

- Pleural injury increased pleural membrane permeability & proteinrich exudates
- Increased intravascular hydrostatic forces and/or decreased oncotic forces that cause protein-poor transudates
- Extravasation of fluid from lymphatic or vascular structures or from an adjacent body compartment into pleural space
- Pleural fluids may accumulate in systemic disease like Rheumatoid arthritis, SLE
- Local disease like pneumonia
- Disease of specific organ system like CHF, liver failure, pancreatitis

WHEN WE DO THORACENTESIS?

Pleural Fluid analysis

- First step is to determine transudate versus exudate
 - > Pleural fluid/serum protein ratio indication of capillary permeability
 - > Pleural fluid/serum LDH ratio indication of inflammation in pleural

space

Light's Criteria:

- Pleural fluid/serum protein ratio > 0.5
- Pleural fluid/serum LDH ratio > 0.6
- Pleural fluid LDH > 2/3 upper limit of normal serum LDH
- Any of the above meets the criteria of exudate
- ❖ Falsely classify about 25% of transudates as exudates usually related to diuretics

Other tests

- Glucose
- Cholesterol
- Triglyceride (>110 mg/dl)
- Lipase & amylase
- Cytology
- Gram stain and cultures
- Cell count and differential

Etiology of Pleural effusion

Causes of pleural fluid transudates and exudates.

Transudates

Heart failure (> 90% of cases)
Cirrhosis with ascites
Nephrotic syndrome
Peritoneal dialysis
Myxedema
Atelectasis (acute)
Constrictive pericarditis
Superior vena cava obstruction

Pulmonary embolism

Exudates

Pneumonia (parapneumonic effusion) Cancer Pulmonary embolism **Bacterial** infection **Tuberculosis** Connective tissue disease Viral infection Fungal infection Rickettsial infection Parasitic infection Asbestos Meigs syndrome Pancreatic disease Uremia Chronic atelectasis Trapped lung Chylothorax Sarcoidosis Drug reaction Post-myocardial injury syndrome

Source: Current Medical Diagnosis and Treatment 2018

Transudative Pleural effusion

- Congestive heart failure most common; usually bilateral
- Hepatic hydrothorax liver cirrhosis & portal hypertension without cardiac or pulmonary pathology
- Most commonly right-sided (80%) although can be either
- Ascites traversing from peritoneal to pleural space via diaphragmatic fenestrations & pressure gradient (peritoneal space=high; pleural space=low)
- Ascites cannot be detected in up to 20%
- Treatment involves sodium restriction & lowering portal pressures
- Spontaneous infection of hydrothorax (15%)
- PF neutrophil count > 250 cells/uL with +culture or > 500 cells/uL with -cx

Transudative Pleural effusion

- Nephrotic syndrome Excessive loss of plasma proteins in urine
- Includes hypoalbuminema, hypercholesterolemia, & peripheral edema

Excretion of total proteins > 3.5g/d

- Urinothorax Rare complication of obstructive uropathy
 Pleural fluid creatinine > serum creatinine; low pH; low glucose
- Renal scintigraphy = tracer flow from urinary tract to pleural space

Exudative Pleural effusion

- Malignant pleural effusion Lung, breast, lymphoma
- Diagnostic yield of pleural fluid cytology =66% (subsequent taps)
- Tuberculous pleural effusion
 - Lymphocyte/neutrophil ratio ≥ 0.75 (>60% lymphocytes)
- Meta-analysis = yield of adenosine deaminase (ADA) to have sensitivity 92%; specificity 90% -
- ADA-2 isoform improves yield; stimulated in presence of live organisms
- Pleural Infection parapneumonic effusions & empyema

Exudative pleural effusion

• Chylothorax :

- Turbid, milky chyle in pleural space from thoracic duct obstruction
- PF triglyceride > 110 mg/dL(check chylomicrons)
- Thoracic duct follows path of abdominal aorta; at level of 5th thoracic vertebra duct crosses to left
 - Below level of crossing right-sided; Above left-sided
- Yellow Nail Syndrome deformed yellow nails, lymphedema, effusion
- Lymphangioleiomyomatosis women (cysts), mutations in tuberous sclerosis complex-2 gene, angiomyolipomas

Exudative pleural effusion

- Rheumatoid Arthritis
 - Most common intrathoracic manifestation of RA (20%)
- Typically pH< 7.20; glucose <50mg/dL; pleural/serum glucose ratio
 <0.5;

elevated LDH (>1,000 U/L), rheumatoid titer > 1:320

- Associated with rheumatoid nodules
- Systemic Lupus Erythematosus
- 30% = pleuritis (independent predictor of mortality); pleural fluid ANA NOT helpful but presence of LE cells is highly specific
- Benign Asbestos-Related pleural effusion
 - Most small, asymptomatic, recurrent

Exudative pleural effusion

- Pancreatitis if chronic ? pancreatic-pleural fistula high amylase levels (>1000)
- Perforated esophagus iatrogenic or post-vomiting (Boerhaave Syndrome)
- Usually left-sided; very low pH < 7.00 & high amylase (salivary)
- Meig's Syndrome
- Ascites & effusion with benign ovarian tumor (fibroma), increased CA-125, R>L
- Hemothorax trauma, iatrogenic, catamenial; PF Hct >50% blood Hct
- Pulmonary Embolism
- Vasculitis Granulomatous Polyangiitis pleural involvement by necrotizing vasculitis
- Biliothorax Complication of percutaneous biliary drainage, radiofrequency ablation
- Unusual things Sarcoid, myxedema, amyloid, extra medullary hematopoiesis, drugs

Pleural effusion post open heart surgery

- CABG-related effusions
- Early (within 30 days) usually bloody; may contain >10% eosinophils
 - Late (> 30 days) non-bloody, lymphocyte predominant
- Post-cardiac injury syndrome (Dressler's) ≥1 week myocardial injury
- Pericarditis, pulmonary infiltrates, pleural effusions
 - Chest pain, fever, leukocytosis, pleuropericardial friction rub
 - PF in 60-80%; small, left-sided; hemorrhagic with neutrophil predominant exudate during acute phase evolving to lymphocyte predominant resolves with anti-inflammatory drug therapy

Pleural fluid due to pneumonia

- Parapneumonic effusion = any effusion from pneumonia that happens in 25-57%
- Uncomplicated, Complicated, & Empyema
 - Uncomplicated generally resolves with antibiotic therapy alone
 - Complicated requires tube drainage or surgery
 - Empyema (presence of pus or bacteria) must always be drained
- No organism grown in 40% with pleural infection
- Higher yield if inoculate PF into blood culture bottle at bedside
- Delay in effective pleural drainage may significantly increase
- morbidity
- Complicated effusion might rapidly evolve into complex empyema requiring surgery

SUMMARY OF CHARACTERISTICS FOR PLEURAL INFECTION DIAGNOSIS AND MANAGEMENT

Т	TREATMENT			Т		PATHOPHYSIOLOGY		CLINICAL APPEARANCES	BIOCHEMISTRY	MICROBIOLOGY
		rge)				PLEURAL INJURY Early inflammation Neutrophil chemotaxis Increased vascular and pleural permeability (mediated by cytokines, e.g. VEGF) Increasing fluid accumulation	EXUDATIVE PHASE	SIMPLE PARAPNEUMONIC EFFUSION Free-flowing fluid	pH > 7.20 GLUCOSE > 60 mg/L LDH < 1000 IU/L	NO ORGANISMS PRESENT
		effusions may need draining if la	UTS		(if inpatient)	ONGOING INFLAMMATION AND BACTERIAL TRANSLOCATION (mediated by cytokines, e.g. IL-8, TNF-α, TGF-β) Activation of coagulation cascade Increasing pleural fibrin deposition and fibrin remodelling Down-regulation of local fibrinolytic pathways	FIBRINOPURULENT PHASE	COMPLICATED PARAPNEUMONIC EFFUSION Increasingly turbid fluid +/- fibrinous septations and loculations	p H < 7.20 GLUCOSE < 60 mg/L	ORGANISMS POSSIBLY FOUND
SURGERY	FIBRINOLYTICS	FLUID DRAINAGE (simple	TION	ANTIBIOTICS THROMBOPROPHYLAXIS	MBOPROPHYLAXIS	BUILD-UP OF BACTERIAL AND INFLAMMATORY CELL DEBRIS Fibroblast chemotaxis Development of fibrosis Formation of complex, organized pleural peel	ORGANISING PHASE	EMPYEMA Pus	LDH > 1000 IU/L	

Fig. 2. The pathophysiology, appearance, diagnostic parameters, and treatment options of infected pleural effusions.

COMMUNITY ACQUIRED 85%									
AEROBES 73%	STREPTOCOCCI 72%	Strep. milleri group 46%							
		Strep. pneumoniae 40%							
		Strep. pyogenes 5%							
		Other streptococci. 9%							
	STAPHYLOCOCCI 14%	S. aureus 77%							
		MRSA 20%							
		S. epidermidis 3%							
	GRAM NEGATIVE 12%								
	OTHER 2%								
ANAEROBES 22%	'Anaerobes' includes Fusobacterium, Bacteroides, Peptostreptococcus, Unclassified mixed anaerobes, Prevotella spp., Clostridium spp., Mycobacterium tuberculosis and Actinomyces spp.								
OTHER 5%									

HOSPITAL ACQUIRED 15%								
AEROBES 88%	STAPHYLOCOCCI 40%	MRSA 71%						
		S. aureus 29%						
	GRAM NEGATIVE 26%	'Gram negative' includes Escherichia coli, Other coliforms, Proteus, Enterobacter spp. and Pseudomonas aeringosa						
	STREPTOCOCCI 21%							
,	ENTEROCOCCCI 13%							
ANAEROBES 8%								
OTHER 4%	'Other' includes <i>Burkholderia anthina, Eikenella,</i> <i>Haemophilus influenzae,</i> oral bacterium, <i>Pasterella multocida</i> , and <i>Klebsiella</i> spp.							

Complicated parapneumonia and empyema

- Increasing incidence with mortality between 10 − 20%
 - 1/3 fail medical management & require surgical drainage
 - 25% require prolonged hospital admission
- Standard treatment
 - Appropriate antibiotics
 - Drainage of infected pleural fluid
 - Intrapleural catheter with or without Fibrinolytics and DNAase
 - Video-assisted thoracoscopic drainage
 - Open thoracotomy/decortication

If an empyema does not rupture, death will occur - Hippocrates

Empyema

TB pleural effusion

- 5 meta-analyses have shown high accuracy of ADA in diagnosis of TB effusions Pooled sensitivities & specificities of 88 92%
- Pleural fluid ADA may also be elevated in parapneumonic, rheumatoid, lymphomatous and malignant effusions
 Combination with other factors recommended
 - Lymphocytic predominant effusion
 - Pleural fluid interferon-gamma levels
 - Interferon gamma releasing assays
- Quantiferon-TB Gold & T-SPOT.TB High rate of false positives and false negatives in pleural fluid

Pneumothorax

- Primary (PSP) = No precipitating event, no clinically apparent lung disorder
 - Men more commonly then women (tall, men, smoker)
- Secondary (SSP) = Underlying pulmonary disease present, usually COPD
- ACCP Consensus Recommendations for management of adults with primary or secondary pneumothoraces (CHEST 2001; 119:590-602)
- PSP Clinically stable with small ptx (< 3cm apex-cupola distance)
 - Observe in ED for 3-6 hours; May discharge home if repeat CXR excludes progression; Followup in 12hours 2 days with CXR
- PSP Clinically stable with large ptx (≥ 3cm apex-cupola distance)
 - Re-expand lung with small-bore catheter (≤ 14F) or placement of 16 –
 22F chest tube attached to Heimlich valve or water seal

Primary Pneumothorax

- Persistent air leak continued observation (3 5 days)
 If persist, consider surgical intervention to close air leak, pleurodese
- Pneumothorax recurrence prevention
 - Except for pts with persistent air leaks, procedures to prevent recurrence of PSP should be reserved for second ptx recurrence Thoracoscopy with sclerosing agents
- Pts with apical bullae should undergo bullectomy (staple bullectomy)
- No recommendation for routine use of CT-imaging in first-time PSP

Secondary pneumothorax

- SSP Clinically stable with small ptx
 - Hospitalize pt; not managed in ED with observation or simple aspiration
 - Hospitalized pts may be observed or treated with chest tube depending
- SSP Clinically stable with large ptx
- Placement of chest tube & hospitalized
 - Chest tube management
 - Size depends on clinical circumstances; chest tube to water seal with or without suction
 - PTX recurrence prevention
 - Medical or surgical thoracoscopy
 - Staple bullectomy

Recurrent spontaneous pneumothorax

- Estimates range from 25 50%; most within first year
- Female gender, tall stature (Marfan's syndrome), low body weight, & failure to stop smoking have increased risk of recurrence
- Birt-Hogg-Dubé syndrome
- Autosomal dominant; benign skin tumors (fibrofolliculomas = benign
 - hamartomatous tumors of hair follicles) & bilateral, multi-focal kidney cancer
- Multiple pulmonary cysts 25% ptx
- Mutations in folliculin gene localized to short arm of chromosome 17
 Loss of function tumor suppressor gene

Malignant Pleural effusion

- MPE most commonly exudative & symptomatic (5% transudative)
 Lung (most commonly adenocarcinoma), breast, lymphoma,
- unknown primary, genitourinary, & gastrointestinal carcinomas
- Paramalignant effusions associated with malignancy but cytology neg
- Symptoms include dyspnea, orthopnea, cough; negative impact on QOL
 - Treatment focused on palliation given poor prognosis
 - Most frequent options include:
 - -Repeated thoracentesis
 - -Tube thoracostomy
 - Pleurodesis
 - -Tunneled pleural catheters

Hemothorax

- Hemothorax is a collection of blood in the pleural cavity usually from traumatic injury
- Bloody pleural vs Hemothorax Hct >50%
- Hemorrhage leading to a hemothorax can originate from the chest wall, intercostal vasculature, internal mammary arteries, great vessels, mediastinum, myocardium, lung parenchyma, diaphragm, or abdomen
- After placement of chest tube
 - 0-400cc Minimal
 - 400-1000cc Moderate
 - >1000cc Massive

Hemothorax

Etiology

- Spontaneous (coagulopathic, vascular, neoplastic, and miscellaneous)
- Traumatic (blunt or penetrating injury)
- latrogenic

Diagnosis

- Chest X ray
- Ultrasound
- CT with IV contrast (identify additional injury in 20-30%)

Management

- In stable patients, hemothorax less than 400cc can be managed conservatively
- Thoracentesis can be consider in symptomatic patient or for diagnosis
- Tube Thoracostomy
- VAT (early vs late ie >7 days)

Hemothorax

- Hemothorax less than 300cc tend to resolve spontaneously
- Retained hemothorax if not drained can lead
 - Pleural effusion
 - Infection
 - Trapped lung/fibrothorax

Mesothelioma

- Arises from mesothelial surfaces of pleural, peritoneal cavities & pericardium
- Inhalational exposure to asbestos clearly established as predominant cause of malignant mesothelioma – first etiologic connection 1960
- 70% of cases associated with documented asbestos exposure
- Asbestos miners, workers, plumbers/pipefitters, mechanical engineers,
 ship/boat building & repairing high risk occupations
- ◆ Lifetime risk of mesothelioma among asbestos workers 8 13%
- Latency period about 30 40 years
- Unclear whether dose-response relationship

Mesothelioma

- Progressive growth = partial or complete encasement of lung with rinds of pleural tumor
- Minimal lung parenchyma penetration
- Spreads along interlobar fissures, diaphragm, mediastinum, pericardium
- 4 major histologic subtypes
 - Epithelioid most common
 - Sarcomatoid fibroblastic-like spindle cells; may mimic fibrosarcoma
- Desmoplastic densely collagenized tissue with atypical cells arranged in "patternless" pattern (Bland tumor so differentiating from fibrous pleuritis difficult)
- Biphasic both epithelioid & sarcomatoid components (Each at least 10% of tumor)

Mesothelioma

A Source: Michael A, Grippil, Jack A. Elise, Jay A. Fishman, Robert M. Kotloff, Allen I. Pack, Robert M. Senior, Mark D. Sieget: Fishman's Fulmonary Diseases and Diserdars: www.sccessmedicine.com Copyright & McCrew-Hill Education. All rights reserved.