Senetic Diseases – Liver

- Inherited Causes of Cirrhosis
- a1– Antitrypsin deficiency
- Other genetic causes
- Cystic Fibrosis (CF)
- Wilson's disease
- Familial intrahepatic cholestasis
- Hemochromatosis

Affected Age Group	Examples
😔 Newborns and Infants	CF, Wilson's, Familial cholestasis
😇 Adults	Hemochromatosis, a1-antitrypsin deficiency

Clinical Manifestations

and causes:

- 🐣 Iron Overload Disorders
- 1-Transfusion
- 2-Ineffective erythropoiesis
- 3-African iron overload (📕 People who drink beer from iron-rich cans may also absorb excess dietary iron.)
- Note: "Not all of these are primary (genetic). Some are secondary (acquired)."

Hemochromatosis – Overview

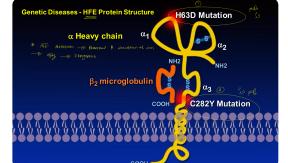
- Incidence is population-dependent > 1/C are cancasians-
- Autosomal recessive inheritance
- HFE gene mutations may be present
- Functional defect: ↑ iron absorption
- Most common in Caucasians
- Heterozygotes: 1 in 12 or Gene
- Homozygotes: 1 in 400 & Genes

"More than 90%" of Caucasian patients with genetic hemochromatosis have HFE gene mutations

Senetic Diseases – Hemochromatosis

Frequency and Genetics

Genotype	Prevalence in Caucasians
Heterozygote (1 copy)	1 in 12
Homozygote (2 copies)	1 in 400


The most common mutations:

6

- C282Y mutation ->> even more common
- H63D mutation

Structure Protein Structure

- The HFE protein interacts with:
- Heavy chain
- β2-microglobulin (2)
- Domains: α1. α2. α3
- Mutations occur at:
- C282Y
- H63D
- Ends of the protein:
- NH₂ (amino terminus)
- **COOH** (carboxy terminus)
- Effect of HFE mutations:

Abnormal iron absorption 🔶 Tissue injury 🔶 Fibrogenesis (scarring of organs) 🔶 Defective intestinal epithelial protein

差 Stages of Hemochromatosis

- Iron overload without organ injury 1.
- 2. Iron overload with organ injury but no symptoms
- 3. Iron overload with both organ injury and symptoms
- Symptoms appear late... often after organ damage like:
- Cirrhosis
- Heart failure
- Pancreatic fibrosis

A Normal Iron Balance

Process	Value
Ingested	10–20 mg/day
Absorbed	1–2 mg/day
Lost	1–2 mg/day (gut, skin, urine)
Menstruation	~30 mg/month (in women) Starts the disease ab a labe stage

Iron Transport and Storage

Component	Function
Transferrin	Carries 2 iron atoms in the plasma
Ferritin	Intracellular storage (thousands of Fe) inside BM
Total body iron	≈ 4 grams
Storage locations	Liver, bone marrow, RBCs

Senetic Diseases – Hemochromatosis

Phenotype Expression

- More common in men than women
- Severity increases with age
- Correlates with:
- Amount of dietary iron
- Conditions like:
- **Chronic hemolysis**
- Alcoholism
- Steatohepatitis
- Hepatitis C
- 9 Why are women less affected early on? Because of menstrual blood loss (iron depletion)
- 🔻 After menopause, women lose this protection 😌 Postmenopausal women are more at risk 🛛 🔊 usually als ope of 50 and 100%

Hereditary Forms of Iron Overload Two types: HEF / Non- HEF

	Туре	Description
1	HFE-related hereditary hemochromatosis	Most common, involves C282Y & H63D mutations
	C282Y homozygosity	Major risk for clinical disease
	C282Y/H63D compound heterozygosity	Intermediate risk
2	Non-HFE hereditary hemochromatosis	Less common types not linked to HFE
	Juvenile hemochromatosis	Presents early in life, more severe
	Neonatal iron overload	Rare and severe, affects infants
A	Autosomal dominant form (Solomon Islands)	Extremely rare

Causes of Iron Overload

- Hereditary Causes
- Senetic mutations (like C282Y, H63D) Suvenile or neonatal forms
- Acquired Causes
- Iron-loading anemias (require frequent transfusions):
- Sideroblastic anemia
- 3 Chronic hemolytic anemia
- 🕏 Dietary iron overload 🛽 🗊 Alcoholic liver disease 🗯 Hepatitis C 🥗 NAFLD (Non-Alcoholic Fatty Liver Disease)
- ✓ "Acquired causes" result from external sources of iron or diseases, not from genetic defects.

差 Iron Measurement Values 🕅 are high

🔷 Test	🕴 Normal Range	🔥 Hemochromatosis Range
Serum Iron (mg/dL)	60–180	180–300
Serum Iron (mmol/L)	11–32	32–54
Transferrin Saturation %	20–50%	55–100%
Ferritin – Males (ng/mL)	20–200	300–3000
Ferritin – Females (ng/mL)	15–150	250–3000
Liver Iron Stain	0 to 1+	3+ to 4+
Liver Iron Concentration	300–1500 mg/g dry weight	3000–30,000 mg/g dry weight
Liver Iron (mmol/g)	5–27	53–536
Iron Index = (Liver iron ÷ Age)	< 1.1	> 1.9

🖊 Diagnosis Criteria

- Homozygous for C282Y = diagnostic
- Compound heterozygous (C282Y + H63D) = possible risk
- Start with:
- Serum iron
- TIBC
- Transferrin saturation
- Ferritin

• Liver iron (if needed)

Test	Normal	Hemochromatosis
Iron (mg/dL)	60–180	>180
TIBC (mg/dL)	230–370	<300
Transferrin Saturation (%)	20–50	>50
Ferritin (ng/mL)	20–200	>300
Hepatic Iron (mg/g)	300–1500	>3000

Genetic Testing confirms diagnosis liver biopsy can be done to assess iron quantitatively when needed

Hemochromatosis – Iron Balance Over Time

W How Iron Accumulates with Age

🕒 Age (Years)	 Hepatic Iron (mg/g dry weight) 	🖍 Serum Iron	▲ Complications
0–20	Normal	Normal	None
30–40	Mild 个	\uparrow	Liver enzyme changes
50+	Marked 个	High	Cirrhosis, organ failure

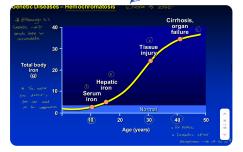
The earlier it is detected, the more complications can be prevented!

Should Be Tested?

Indications for HFE Genetic Testing:

- Family history of hemochromatosis
- Chronic liver disease
- Abnormal liver function tests
- Abnormal iron panel
- Diabetes mellitus
- Arthropathy
- Heart disease

Seven without cirrhosis, suspect hemochromatosis in young adults with abnormal liver enzymes.


Interpretation of Ferritin Levels

Ferritin	Iron	Likely Diagnosis
High	High	Hemochromatosis
High	Low/normal	Acute liver injury / inflammation
Low	Low	Iron deficiency
Normal	Low	Chronic disease anemia

Hepatic Iron Index (HII)

HII = Liver iron (µmol/g) ÷ Age (years)

Index Range	Interpretation
< 1.1	Normal or non-HFE-related
> 1.9	Suggests Hemochromatosis

Phlebotomy – Treatment for Iron Overload

Induction Phase:

- 1 unit blood (≈250 mg Fe)
- Weekly or biweekly
- Until mild anemia develops & Ferritin <50 ng/ml
- Monitor Hemoglobin, Ferritin, Transferrin saturation

Maintenance Phase:

- Once Ferritin < 50 ng/mL and
- **Transferrin saturation < 50%** \rightarrow Switch to phlebotomy **every 2–3 months** \rightarrow Continue monitoring

Why Phlebotomy Works

Manifestation	Can it Improve?
Cardiac dysfunction	Reversible
Glucose intolerance	Reversible
Hepatomegaly	✓ Reversible
Skin pigmentation	Reversible
Cirrhosis	× Irreversible
Hepatocellular carcinoma	X Irreversible risk
Arthropathy, Hypogonadism	X Often irreversible
Arthropathy, Hypogonadism	A Often irreversible

🗹 Early diagnosis = Better survival 📉 Delayed treatment = Organ damage risk

II Iron Depletion = Better Outcomes

Time	Cumulative Survival (%)
After 18 mo of phlebotomy	~100%
No treatment	\downarrow significantly

Stemochromatosis – Response to Phlebotomy

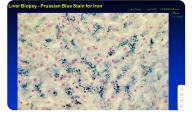
✓ Iron Lab Trends During Treatment

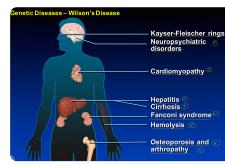
Time (months)	Serum Ferritin (ng/mL)	Transferrin Saturation (%)	Hemoglobin
0	High	High	Normal
4–12	$\downarrow\downarrow$	\downarrow	↓ Slightly
20–28	Low-normal	Normal	Stable

Phlebotomy leads to:

- ↓ Serum ferritin
- ↓ Transferrin saturation
- Slight drop in hemoglobin (expected)

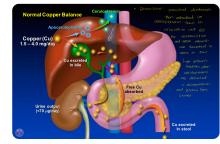
差 Liver Biopsy Findings


- Trichrome Stain
- Stains fibrosis (scarring) in the liver
- Prussian Blue Stain
- Stains iron deposits blue
- Classic "chicken-wire" appearance in hepatocytes
- Used to quantify iron in tissue


🧬 Genetic Diseases – Wilson's Disease

Pathophysiology

- Cause: Copper accumulation in tissues
- Mutation: ATP7B gene defect (on chromosome 13)
- Inheritance: Autosomal recessive
- Affects:
- Liver hepatitis, cirrhosis
- Basal ganglia neuropsychiatric symptoms
- Eyes Kayser-Fleischer rings
- Kidney Fanconi syndrome



- Heart Cardiomyopathy
- Bones/joints Osteoporosis, arthropathy

i

Copper Overload – Mechanism

Normal Copper Metabolism	Wilson's Disease
Cu intake: 1.5–4.0 mg/day	↑ Accumulation of free copper
Cu bound to ceruloplasmin	Ceruloplasmin 🗸 or defective
Excess excreted in bile	\downarrow Bile excretion
Urine copper < 70 μg/day	Urine copper > 100 μg/day

Ceruloplasmin – Key Protein

- Ceruloplasmin = Blue alpha-2 globulin
- Binds copper irreversibly
 - Normal serum level = 20-40 mg/dL Decreased ceruloplasmin decreases in :

	Condition	Ceruloplasmin Level
Q	Wilson's (homozygotes)	↓↓↓ (~95%)
٩	Wilson's (heterozygotes)	↓ (~20%)
3	Menkes syndrome	\checkmark
<u>(4)</u>	Nephrotic syndrome	\downarrow
(5)	Hepatic failure	\checkmark

Solecular Defect

•

- ATP7B gene codes for P-type ATPase
- Functions:
- Copper binding
- Channel/transport activity
- Excretion via bile
- Mutation = Copper builds up in:
- Lysosomes
- Golgi
- Space of Disse

Leads to cellular stress and death

Wilson's Disease – Indications for Testing

You should suspect and test for Wilson's disease in the following situations:

🔎 Clinical Scenario	💡 Why to Test for Wilson's	
Liver disease in children, adolescents, or young adults	Copper accumulates early in life	
Hemolysis with liver disease	Copper is toxic to RBCs	
Neurological symptoms in young individuals	Tremor, gait changes, Parkinson-like signs	
Psychiatric disorders in young people	Psychosis, depression, personality changes	
Family history of Wilson's disease	Autosomal recessive inheritance	
Kayser-Fleischer rings seen on slit-lamp exam	Classic sign of copper overload	
Sunflower cataracts	Copper in the eye lens	
Fanconi syndrome (renal tubular dysfunction)	Associated with copper toxicity	
Low serum uric acid (hypouricemia)	Renal loss due to Fanconi	
Unexplained acute liver failure in young patient	Wilson's is a major cause	
Cryptogenic cirrhosis (unknown cause) in youth	Always rule out Wilson's	
Indian Childhood Cirrhosis / PSC / PBC in young age	Overlaps in copper-related disease spectrum	
Solden Rule: of "Any young patient with chronic benatitis and abnormal liver enzymes — always think of Wilson's disease "		

🤝 Golden Rule: 🧉 "Any young patient with chronic hepatitis and abnormal liver enzymes — always think of Wilson's disease." 🚽

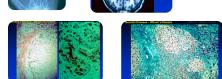
Clinical Features – Wilson's Disease

System	Presentation
Liver	Hepatitis, cirrhosis, acute failure
CNS	Parkinsonism, tremor, gait disturbance
Psychiatric	Depression, psychosis
Eye	Kayser-Fleischer rings, sunflower cataracts
Kidney	Fanconi syndrome, hypouricemia

🖋 Wilson's Disease – Diagnosis

Key Diagnostic Tests

Test	Finding
Serum Ceruloplasmin	< 20 mg/dL (↓ in 95% of homozygotes)
24-hour Urine Copper	> 100 μg/day
Kayser-Fleischer rings	Seen on slit-lamp exam
Liver Biopsy	Hepatic copper > 250 µg/g dry weight
MRI Brain	Basal ganglia hyperintensity
	A


🔺 5% of patients may have normal ceruloplasmin 🔺 Liver biopsy is diagnostic when genetic testing is unclear

Kayser-Fleischer Rings

- Golden-brown deposits at the corneal edge .
- Seen in 95% of neuro-Wilson's cases •
- Slit-lamp exam required to visualize

🧠 Brain MRI – Wilson's

- Shows copper deposition in:
- . **Basal ganglia**
- Thalamus
- Midbrain
- Appearance: Hyperintensity (bright lesions) Also used to assess neurological severity

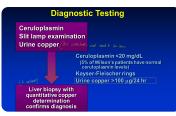
🖋 Wilson's Disease – Management

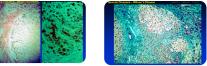
\delta Therapy

Treatment	Purpose
Chelation therapy	Removes copper from the body
D-penicillamine	Most common chelator
Trientine	Alternative if penicillamine not tolerated
Zinc	↓ GI copper absorption
Pyridoxine (B6)	Supplement with chelation
Liver transplant In end-stage liver failure	
S Avoid:	

- Shellfish .
- Liver
- Chocolate
- Mushrooms
- Nuts

.


Canned food (high in copper)


Monitoring

- Urine copper (response to therapy) •
- Non-ceruloplasmin copper
- Do not monitor Kayser-Fleischer rings as treatment indicator .

Hemochromatosis vs Wilson's Disease – Comparison Table

Feature	Hemochromatosis	Wilson's Disease
Inheritance	Autosomal Recessive	Autosomal Recessive
Metal Overloaded	Iron	Copper
Gene	HFE (C282Y, H63D)	АТР7В
Age of Onset	Adults (40–60 yrs)	Children/Young Adults
Ceruloplasmin	Normal	$\downarrow \downarrow \downarrow \downarrow$
Transferrin Saturation	个个 (>50%)	Normal
Ferritin	$\uparrow \uparrow \uparrow$	May be elevated (due to liver injury)
Urine Metal	Not diagnostic	Copper > 100 µg/day
Eye Finding	None	Kayser-Fleischer rings
Organ Involvement	Liver, pancreas, heart, joints	Liver, brain, eyes, kidneys, joints
Biopsy Finding	Iron deposits (Prussian blue stain)	Copper buildup (rhodanine or biopsy
		test)
Treatment	Phlebotomy	Chelation + Zinc
Risk of HCC	Yes (in cirrhosis)	Yes (in advanced liver disease)

