Anemia (3).ms 18.11.2020 Hemolytic Anemia

Abdallah Abbadi Feras Fararjeh

Case 3

24 yr old female presented with "anemia syndrome" and jaundice. She was found to have splenomegaly.

Hb 8, wbc 12k, Plt 212k, retics© 12%, LDH 1400, bilirubin 7mg/dl,d 2.5mg/dl, DAT +3.Bld film spherocytes, polychromasia.

Bld film

Supravital stain(retics)

Case 3

CT Abdomen AbdominalUS BM aspirate

BM:erythroid hyperplasia with megaloblastoid changes

Diagnosis: AIHA. Treated with steroids + folic acid, complete response, but 9 months later had NHL.

Hemolysis= RBC destruction= Shortend RBC Survival with or without anemia

Hemolytic Anemias – Classification

- By sites of red cell destruction: intra *v* extravascular
- Acquired (immune, Non-immune).
 v congenital (membrane: HS, Enzymopathies: G6PD def/PK, Hb-pathies: Thal, ss)
- By mechanism of red cell damage:

Extravascular Hemolysis

Ingested by RE cell (spleen & liver)

Reutilized bilirubin

Intravascular Hemolysis

Hemolysis

Evidence for increased red cell production

- In the blood:
- Elevated reticulocyte count (corrected/RPI)
- Circulating NRBCs may be present
- In the bone marrow:
- erythroid hyperplasia
- reduced M/E (myeloid/ erythroid erythroid ratio)
- In the bone:
- Deforming changes in the skull and long bones (" frontal bossing ")

General Clinical Features

- 1- Anemia syndrome
- 2- Spleenomegaly
- 3-gallstones.
- 4- Dark urine (tea-colored or red)
- 5- Patients may have chronic ankle ulcers.
- 6- Aplastic crises associated with Parvovirus B19, may occur
- 7- Increased requirement for folate

Gallbladder stones/ biliary/ pigment stones

Parvovirus B19

- Non-encapsulated DNA virus.
- Infects and lyses RBC precursors in marrow, causing 7-10d cessation of erythropoiesis.
- Normal individuals have no significant hematologic effect, since RBCs have normal life span.
- In pts with hemolytic anemias, loss of red cell production causes Aplastic Crisis

Autoimmune Hemolytic Anemia

- Warm antibodies (IgG-mediated)
 - Primary 45%
 - Secondary40%
 - Lymphoproliferative disease
 - Connective tissue disease
 - Infectious disease
 - Drug-induced15%
- Laboratory testing
 - Normocytic/macrocytic anemia
 - Peripheral smear spherocytosis

Anti-Globulin (Coombs) Testing

Direct antiglobulin testing(DAT)

Indirect antiglobulin testing

Treatment of Autoimmune Hemolytic Anemia (Warm Antibody type)

- Treat underlying disease if indicated
- Prednisone (1 mg/kg/day for two weeks, then taper)
- Splenectomy ??
- Other
 - Immunosuppressive agents
 - IVIG

Hemolytic Anemia with Intravascular Hemolysis

- Mechanical damage (Microangiopathic hemolytic anemia)
- Chemical damage (Burns)
- Infection (Malaria or Babesiosis)
- Transfusion reaction (ABO incompatibility)

Differential Diagnosis of Microangiopathic Hemolytic Anemia

- Thrombotic thrombocytopenic purpura (TTP)
- Hemolytic uremic syndrome (HUS)
- Disseminated intravascular coagulation (DIC)
- Vasculitis
- Malignant hypertension
- Metastatic neoplasm with vascular invasion
- Preeclampsia/HELLP syndrome of pregnancy

Schistocytes: Microangiopathic Hemolytic Anemia

Case 3 B

19 yr old male presented with "anemia syndrome", fever and easy bruising. No splenomegaly

Hb 6 g/dl, WBC 1500 : N10%, L 80%, others 10%.

Retics© 0,001%.MCV 105fl,Plt 20k.

BM/ Trephine

CXR/lobar pneumonia

APLASTIC ANEMIA

- Aplastic anemia is a severe, life threatening syndrome in which production of erythrocytes, WBCs, and platelets has failed.
- Aplastic anemia may occur in all age groups and both genders.
- The disease is characterized by peripheral pancytopenia and accompanied by a hypocellular bone marrow.

APLASTIC ANEMIA

- The primary defect is a reduction in or depletion of hematopoietic precursor stem cells with decreased production of all cell lines
 - This may be due to quantitative or qualitative damage to the pluripotential stem cell.
 - In rare instances it is the result of abnormal hormonal stimulation of stem cell proliferation
 - or the result of a defective bone marrow microenvironment
 - or from cellular or humoral immunosuppression of hematopoiesis.

Causes of Bone Marrow Failure

Acquired

- -Idiopathic
- -PNH
- Secondary
- -Drugs
- -- radiation
- -Viruses

Inherited

- -Fanconi anemia
- -Diamond-Blackfan Anemia
- -Other rare conditions

Clinical manifestations of AA

- »Anemia syndrome
- »Neutropenia syndrome
- »Thrombocytopenia syndrome
- »Combination of the above

Presenting Symptoms of Aplastic Anemia

•

Symptoms	Number of Patients		
Bleeding	41		
Anemia	27		
Bleeding and anemia	14		
Bleeding and infection	6		
Infection	5		
Routine examination	8		
Total	101		

Classification of aplastic anemia

Classification	Criteria				
Severe	BM cellularity < 25% (or < 50% if < 30% of BM is hematopoietic cells)				
	AND \geq 2 of the following:				
	 Peripheral blood neutrophil count < 0.5 × 10⁹/L 				
	 Peripheral blood platelet count < 20 × 10⁹/L 				
	 Peripheral blood reticulocyte count < 20 × 10⁹/L 				
Very severe	As above, but peripheral blood neutrophil count must be $< 0.2 \times 10^9 / L$				
Nonsevere	Hypocellullar BM with peripheral blood values not meeting criteria for severe aplastic anemia				

Treatment Algorithm for AA

Treatment of AA

- » Remove causative agent, if known
- » Supportive care

RBC transfusions

Treat infections

Treat Bleeding

- » Bone marrow transplant
- » Immune suppression

_ CSA

_ ATG

Combination of the above

Survival after Allogeneic Transplants for Severe Aplastic Anemia, ≥ 20 Years, 2002-2012

Immunosuppression for AA

Table 1. Intensive immunosuppression (ATG plus cyclosporine) for severe aplastic anemia

Study	N	Median Age	Response	Relapse	Clonal	Survival
		(years)			Evolution	
German ¹⁰⁸	84	32	65%	19%	8%	58% at 11 yrs
EGMBT ⁷¹	100	16	77%	12%	11%	87% at 5 yrs
NIH^{70}	122	35	61%	35%	11%	55% at 7 yrs
Japan* ⁷²	119	9	68%	22%	6%	88% at 3 yrs
NIH^{*81}	104	30	62%	37%	9%	80% at 4 yrs

A strong age effect in patients with aplastic anemia, after transplantation from an HLA identical sibling.

Andrea Bacigalupo Blood 2017;129:1428-1436

The age effect in UD transplants: best outcome is seen for very young patients, for whom first-line UD BMT may be considered.

Andrea Bacigalupo Blood 2017;129:1428-1436

The age effect in patients receiving first-line IST. Data from the EBMT registry.

Andrea Bacigalupo Blood 2017;129:1428-1436

RELATED DISORDERS

- 1- Disorders in which there is peripheral pancytopenia, but the bone marrow is normocellular, hypercellular, or infiltrated with abnormal cellular elements (Myelopthesic anemia)
- replacement of bone marrow by fibrotic, granulomatous, or neoplastic cells
- 2- Pure red Cell aplasia
- 3- Myelodysplastic syndrome (MDS)