Diabetic Nephropathy: -> Alc growing discuse worldwide

- Definition
 - Persistent albuminuria (>300 mg/day or >200 µg/min) = (hallmark) of diabetic nephropathy.
 - Meaning: If a diabetic patient keeps losing more than 300 mg of albumin every day in urine → suspect diabetic kidney disease.
 - Diagnosis is clinical when:
 - 1. The patient also has diabetic retinopathy
 - 2. There's no evidence of other kidney or urinary diseases (like infection, stones, etc.)

Semory Tip:

Diabetic nephropathy = albuminuria + retinopathy + no other cause.

- Clinically: The patient will show:
 - Progressive proteinuria
 - Decreasing GFR
 - o HTN
 - Very high risk of CVS disease (heart attack, stroke).
- ~40% of DM pt \rightarrow will develop nephropathy.
 - Type 2 diabetes is more common, so *most cases of diabetic nephropathy are Type 2*.

Progression Timeline

- High GFR in dm pt → not good sign
- Microalbuminuria → appears 5–10 years after diabetes starts.

Important: Screening recommendations

- Type 1 Diabetes: Start screening **5 years** after diagnosis, then every year.
- **Type 2 Diabetes**: Screen **immediately** when diagnosed, then **every year**.

< Memory Tip:

Type 1 = 5 years → start.

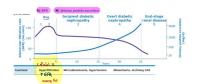
Type 2 = start now \rightarrow every year.

Early Kidney Changes

- **1-2 years** after clinical diabetes → **changes** start in the kidneys:
 - **GBM thickens**.--> sensitive indicator for dm
 - But GBM thickening **alone** doesn't mean severe disease yet.

Pathology Changes

• Loss of heparin sulfate from GBM → removes negative charge → allows negatively charged albumin to leak into urine.


(Normal GBM repels albumin; when you lose the charge, albumin escapes.)

- Mesangial expansion (middle part of glomeruli swells with extracellular matrix).
 - This swelling = clinical diabetic nephropathy symptoms.
- **Diffuse diabetic glomerulosclerosis** = when this swelling becomes generalized across glomeruli.
- Nodular glomerulosclerosis (Kimmelstiel-Wilson nodules) = special finding:
 - Big, round, mesangial nodules
 - Compress nearby capillaries badly.
- Arteriolar hyalinosis (thickening of arteries around glomeruli) shows up within 3–5 years.

◆ Clinical Course (Natural Phases) → dec renal fx

- 1. Hyperfiltration Phase:
 - **GFR is high** at first (kidneys work harder).
 - No hypertension or albuminuria yet.
 - Intensified insulin tx and control near normal blood glu levels → red GFR to nl range after (days to week) in both dm types (1+2)

 \circ 2.71x \rightarrow progress to micro

2. Microalbuminuria Phase:

- Urinary albumin = 30–300 mg/day.--> Confirm at least by testing 2 out of 3 sterile samples(persist microalbum.)
- Urinary albumin/creatinine ratio can also be used (30-300 mg/g = microalbuminuria). 0
- C-imp Earliest marker of kidney damage. 0

3. Overt Nephropathy:

- 0 Full-blown proteinuria (>300 mg/day).
- May develop nephrotic syndrome. 0

4. End-Stage Renal Disease (ESRD):

- Complete kidney failure.
- Need dialysis or transplant. 0

Mechanisms causing microalbuminuria:

- Loss of glomerular charge barrier $(-ve \emptyset)$
- Podocyte changes (# and morphology)
- Glomerular hypertension +/- sys HTN
- Elevated glomerular filtration pressures (at rest , at exercise)

Microalbuminuria Importance

• Type 1 Diabetes:

Nephrobic syndrome

ranses

- Microalbuminuria = big risk (median risk ratio 21) for progressing to nephropathy. 0
- Type 2 Diabetes:
 - Median risk ratio ~8.5. 0
 - 0 Not as high as type 1, but still significant.
- If you control blood sugar well, up to 58% can return to normal albumin levels!

Microalbuminuria predicts:

- 0 Cardiovascular disease risk.
- Death from heart disease. 0
- Stroke. 0
- 0 Kidney failure.

Diabetic Nephropathy

- Signs:
 - Albuminuria >300 mg/day or CR 300 mg/g
 - GFR decline.
 - High blood pressure.
 - Enhance CVS morbidity and mortality 0
- Symptoms:
 - Peripheral edema (earliest symptom) 0
 - First sign → albuminuria 0
 - Seen even when GFR is still relatively normal. 0
- GFR decline rate: variable
 - o 2 to 20 mL/min/year.
 - Average = ~12 mL/min/year. 0

Factors Worsening Progression

- **Systemic hypertension** \rightarrow glomerular hyperperfusion \rightarrow inc capillaries pressure \rightarrow glomerular HTN.
- Loss of autoregulation \rightarrow kidneys can't protect themselves \rightarrow faster damage \rightarrow inc vulnerability to HTN or ischemic injury of glomerular cap.

Diabetic Retinopathy Connection

2) more times.

- Type 1 Diabetes: More Common 90% of nephropathy cases also have retinopathy. 0
 - Protienuria and No retinopathy? Think of another cause. 0
- Type 2 Diabetes:
 - o 60% have retinopathy.

Macrovascular Disease (macroangiopathies)

Stroke, coronary artery stenosis, coronary artery disease, peripheral vascular disease → 2-5x more common in diabetic nephropathy patients.

Screening Summary

🗬 Rules:

- **Type 2 diabetes:** Screen **immediately** at diagnosis ,, since 7% already have microalbumnuria at the same time
- Type 1 diabetes: Screen 5 years later.
- If microalbuminuria absent, repeat yearly for both
- Puberty, poor glycemic control and poor lipid control \rightarrow independent risk factors for microalbuminuria.
- type 1 diabetes, screening for micro albuminuria might be performed 1 year after diabetes diagnosis in these patients or patients with poor glycaemic control pots a)

Diagnosis of Diabetic Nephropathy

Biopsy (GOLD) NOT always needed unless: (not dm nephro)

- Hematuria
- Nephrotic range proteinuria at time of diabetes diagnosis
- Other systemic diseases suspected (autoimmune, hepatitis C, HIV).
- Imay be deferred with the assumed diagnosis of diabetic nephropathy in the context of :
- Macro albuminuria (>300 mg/24 hours) that has developed progressively
- Microalbuminuria (30-300 mg/24 h) with retinopathy
- Microalbuminuria in pt with dm > 10 years.

🔷 Treatment Goals 🎯

- 1. Control Blood Sugar (Glycemic Control)
- 2. Control Blood Pressure:
 - Target = <130/80 mmHg.
- 3. RAAS Inhibition: (none BD more damage / more damage more BP so it's a cyce)
 - ACE inhibitors or ARBs are first-line treatment for dm pt with microalbuminuria or diabetic 0 nephropathy.
 - \circ inhibition of the RAAS \rightarrow slows the progression of diabetic nephropathy compared to other
 - antihypertensive drugs + blood pressure lowering
 - o The current recommendations → to target a blood pressure of 130/80 mmHg in diabetic pt
 - 0 Slow down kidney damage even beyond BP lowering.

4. SGLT2 Inhibitors:

- New drugs that protect kidneys and heart (e.g., empagliflozin).
- Memory Tip for Diabetic Nephropathy Management:

G-BASICS

Glycemic control Blood pressure control ACEi/ARB SGLT2 inhibitors Initiate low-sodium diet

Control cholesterol Stop smoking

Other Important Treatments

- Low sodium diet
- Smoking Cessation
- Use of diuretics:
 - may also enhance the antiproteinuric effects of RAAS inhibition while simultaneously decreasing fluid overload and HTN
 - **Loop diuretics if GFR <40** (at least twice daily)
 - Thiazides if GFR >40. (limited)
- Additional antihypertensive drugs depending on patient's comorbidities:
 - Beta-blockers for CAD or arrhythmias or congestive HF
 - o Calcium channel blockers if no cardiac problems

Part 2: Lupus Nephritis (LN)

Definition

- Lupus nephritis =one of the most serious manifestation of SLE
- Most patients with SLE \rightarrow show **histological evidence** of lupus nephritis, even if clinically silent.
- It's considered one of the most serious complications of SLE.
- Timing: Usually develops within 5 years after being diagnosed with SLE.

Pathophysiology (Disease Mechanism)

• What causes lupus nephritis? <- Nephritogenic autoantibodies.

Autoantibodies specifics:

- 1. Directed against nucleosomes or dsDNA (double-stranded DNA).
 - $\circ \quad \text{Some of these antibodies } cr \underline{oss-react} \text{ with the (GBM)}.$

2. High-affinity antibodies:

- \circ Form immune complexes inside blood vessels \rightarrow These complexes deposit inside glomeruli.
- 3. Cationic antibodies: (higher affinity)
 - They stick more easily to the **anionic (negatively charged)** GBM.
- 4. Isotype matters:
 - IgG1 and IgG3 are the (worst) they activate complement strongly → more inflammation.

Factors Influencing the Type of Nephritis

- Depends on:
 - o Autoantibody type
 - o Immune response
 - o Genetic and environmental factors

How Common?

- 35% of adults with SLE have nephritis at the time of diagnosis.
- 50-60% develop nephritis during first 10 years.
- More common in females.
- Peak age: 21–40 years old.
- 100% have positive Anti-dsDNA antibodies.

• 40% common histo type → class 4

• Among secondary glomerulonephritis causes, lupus nephritis is the most prevalent.

Memory Tip:

50% of lots of immuno-50% of cell attack and Stomenuli cell attack and in affected damage the glor

ypey: Diffused

Lupus Nephritis Type IV

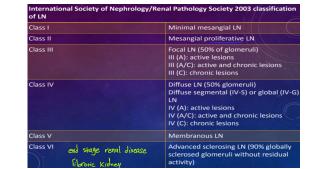
	Autoantibodies	1
Form pathogenic immune complexes intravascularly	Bind to antigens located in the glo basement men	omerular
Immune complexes deposited in glomeruli	Immune complex	es in situ
Activating complement and attracting inflammatory cells, including lymphocytes, macrophages, and neutrophils		
And the second		
Prom	ote an inflammatory response	

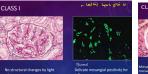
Lupus nephritis = Young women + positive Anti-dsDNA + Class IV mostly.

Clinical Features (Symptoms)

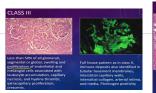
- May be asymptomatic at first (silent damage).
- Systemic SLE symptoms: active
 - o Fatigue
 - o Fever
 - o Skin rash
 - o Arthritis
 - Serositis (inflammation of body linings)
 - CNS symptoms (confusion, psychosis)
- Renal (kidney) symptoms:
 - o Peripheral edema (swollen legs, face) secondary to HTN or hypoalbuminuria
 - Symptoms of hypertension diffuse lupus- (headache, dizziness, blurred vision, signs of cardiac decompensation).

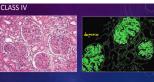
 Important Table: Clinical Features (with their free 	
Feature	% of Patients
Proteinuria	100%
Nephrotic syndrome	45-65%
Granular casts	30%
Red cell casts	10%
Microscopic hematuria	80%
Macroscopic hematuria	1-2%
Reduced renal function	40-80%
Rapid decline in renal function	30%
Acute renal failure	1-2%
Hypertension	15-50%
Hyperkalemia	15%
Tubular abnormalities	60-80%
· · · · · · · · · · · · · · · · · · ·	

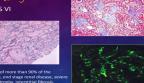

Important Table: Clinical Features (with their frequencies)


In Lupus Nephritis, proteinuria = always 100%. If no proteinuria → think again!

Laboratory Tests


- Blood Urea Nitrogen (BUN)
- Serum Creatinine (check kidney function)
- Urinalysis (protein, RBCs, cellular casts)
- Spot urine creatinine and protein
- Normal urine values:
- Creatinine excretion: 1000 mg/day/1.73 m²
- Protein excretion: 150–200 mg/day
- Protein/creatinine ratio: <0.2


Constants Constitution from Language Manufacture



Lesions similar to Class III, but involves > 50% of glomeruli have Proli

 Serology Specific for Lupus Nephritis 	
Test	Result
ANA (dx=SLE)(antinuclear antibody)	Positive
Anti-dsDNA	Elevated
Complement (C3, C4, CH50)	Decreased
ESR	Elevated
CRP	Normal or slightly raised

Anti-C1q antibody

Elevated (less sensitive than Anti-dsDNA, but more specific)

Memory Tip:

↓ C3 + ↑ Anti-dsDNA = active lupus nephritis!

Indications for Renal Biopsy (When to do it?)

- 🔽 Do a biopsy if:
 - Creatinine rising without clear reason (not dehydration, not drugs)
 - Proteinuria ≥ 1 g/day
 - Proteinuria ≥ 0.5 g/day plus:
 - Hematuria (≥5 RBCs/high power field)
 - OR cellular casts.

🧠 Memory Tip:

If Protein > 0.5 g + hematuria or casts → biopsy NOW!

Indications for renal biopsy in pt with SLE

- *serum Cr without compelling alternative causes (such as sepsis, hypovolemia, or medication)
- Confirmed proteinuria of 1.0 gm per 24 hours
- •pt with clinical evidence of active LN, previously untreated,

• Combinations of the following \rightarrow findings are confirmed in at least 2 tests done within a short period of time and in the absence of alternative causes:

- Proteinuria 0.5 gm per 24 hours + hematuria, defined as 5 RBCs per hpf,
- Proteinuria 0.5 gm per 24 hours + cellular casts

Importance of Biopsy

- Confirm diagnosis.
- Identify additional or alternative causes of renal disease
- Classify according to ISN/RPS system
- Check activity (how much current inflammation) and chronicity (how much permanent damage).
- Plan correct treatment + determine prognosis

Goals of Treatment

What do we want?

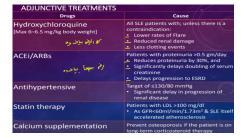
- Save kidney function.
- Avoid progressive.
- Avoid side effects of drugs.
- Improve patient's life.

Tx:

Adjunctive Treatments

- Primary → by immunosuppressive agents
 - 1- Induction Therapy. 2- Maintenance Therapy

Lifestyle Changes


immunosuppressive agents :

- Depends → on class of LN diagnosed on kidney biopsy with presence of extra-renal manifestations of SLE
- Goals of immunosuppressive treatment:
 - Long-term preservation of renal function,
 - Prevention of flares,
 - Avoidance of treatment-related harms (side effect)
 - Improved quality of life and survival

Immunosuppressive Therapy

Two Phases:

1. Induction Phase (to control active disease fast):

- High-dose corticosteroids PLUS
- Either Cyclophosphamide OR Mycophenolate mofetil (MMF).
- 2. Maintenance Phase (keep the disease calm long-term):
 - Azathioprine OR MMF (lower doses) +/-low-dose steroids if needed.

Semory Tip:

Induction = fire extinguisher (high dose). Maintenance = gentle water hose (low dose).

Alternative Options

• Calcineurin inhibitors (e.g., Tacrolimus, Cyclosporine) + low dose corticoids → For patients who can't tolerate MMF or Azathioprine. → may need dialysis and kidney transplant

Lifestyle Changes

- Hydrate properly.
- Low-salt diet.
- No smoking.
- No alcohol.
- Control cholesterol.
- Gentle exercise.
- Control blood pressure tightly.
- Avoid nephrotoxic drugs (e.g., NSAIDs).

Relapse Risk

- 25% relapse at 5 years.
- 46% relapse at 10 years.

Vertice Predictors of flare:

- Low C3 and C4
 - Rising anti-dsDNA
 - RBC or WBC casts appearing in urine

Memory Tip:

Low C + High Anti-dsDNA = Flare danger!

Types of renal flares:

- Proteinuric (increase proteinuria)
- Nephritic (increase >30% of Scr and/or active urine sediment).
- Flares are highly predicted by RBC or WBC casts, low C3 and C4 and rise in ds DNA.

Special Situations

VTransplantation:

- SLE patients = ~3% of kidney transplants.
- Wait 3 months on dialysis to make sure no spontaneous recovery.
- Ensure that the patient does not have active SLE disease at the time of transplantation.
- ~3.3% of patients on RRT have functional renal recovery and be off dialysis.
- Majority of patients has a decline in disease activity with ESRD treatment.
- Recurrence rate low (<2–4%).

V Pregnancy:

- Avoid pregnancy if active lupus nephritis / nephrotic syndrome, severe HTN, inc serum Cr>2mg/dl? aggravate renal disease
- Patients with well-controlled SLE who conceive after a 3- 6-month → period of remission have a 7- 10% chance of renal flare.

- *Preexisting hypertension and antiphospholipid antibody syndrome → are the most 2 common predisposing factors to preeclampsia.
- Pregnancy risks: Preeclampsia, renal flares(50-60%) .

Suntain Summary for You

	•
Diabetic Nephropathy	Lupus Nephritis
Albuminuria >300 mg/day	Immune complexes (Anti-dsDNA) attack glomeruli
Progresses over 4 stages	Within 5 years of SLE diagnosis
Confirm if Retinopathy present	Biopsy mandatory if suspicion
Main management = ACEi/ARB	Main management = steroids + cyclophosphamide/MMF
Microalbuminuria precedes macroalbuminuria	Low C3 + High Anti-dsDNA = active disease
SGLT2 inhibitors are new promising drugs	High relapse risk, transplant possible

Revision

Definition	- Persistent albuminuria >300 mg/day (hallmark).
	- Clinical diagnosis if: albuminuria + retinopathy + no other kidney disease.
Epidemiology	- ~40% of diabetics develop nephropathy.
	- More common in Type 2 diabetes (because Type 2 is more common overall).
Screening	- Type 1 DM: Screen after 5 years of diagnosis, then yearly.
Recommendations	- Type 2 DM: Screen at diagnosis, then yearly.
Pathology Changes	- GBM thickening (sensitive early indicator).
	- Loss of negative charge (heparan sulfate) \rightarrow albumin leakage.
	- Mesangial expansion \rightarrow glomerulosclerosis.
	- Kimmelstiel-Wilson nodules = diagnostic.
Progression Stages	1. Hyperfiltration: High GFR, no proteinuria.
	2. Microalbuminuria: 30-300 mg/day.
	3. Overt Nephropathy: >300 mg/day proteinuria, nephrotic syndrome.
	4. ESRD: Dialysis or transplant needed.
Clinical Signs/Symptoms	- First sign = albuminuria (even if GFR normal).
	- Gradual GFR decline (avg 12 mL/min/year).
	- Hypertension common.
	- Peripheral edema early.
Mechanisms of Injury	- Loss of charge barrier.
	- Podocyte injury.
	- Glomerular hypertension.
Risk Factors for	- Systemic hypertension.
Progression	- Poor glycemic control.
	- Smoking.
	- Dyslipidemia.
	- Loss of autoregulation \rightarrow susceptibility to damage.
Diabetic Retinopathy	- Type 1: 90% have retinopathy if nephropathy present.
Link	- Type 2: 60% have retinopathy.
Diagnosis Confirmation	- Clinical mainly.
	- Biopsy if atypical (e.g., hematuria, massive proteinuria at diagnosis, absence
	of retinopathy).
Treatment Goals	©*
	1. Glycemic control (HbA1c target individualized).

	2. BP control: <130/80 mmHg.
	3. RAAS inhibition: ACEi or ARB.
	4. SGLT2 inhibitors: (renal and CV protection).
	5. Lifestyle: Low sodium, no smoking, statins if dyslipidemia.
Important Medications	- ACEi/ARB = first-line (protect kidneys beyond BP lowering).
	- SGLT2 inhibitors (e.g., empagliflozin).
	- Diuretics: Loop if GFR <40, Thiazides if GFR >40.
Screening Strategy	
(Memory Tip)	- Type 1: 5 years → start.
	- Type 2: Screen immediately.
	- Puberty, poor glycemic/lipid control → screen earlier.
Memory Tip for	G-BASICS:
Management	Glycemic control + Blood pressure control + ACEi/ARB + SGLT2 inhibitors +
	Initiate low-sodium diet + Control cholesterol + Stop smoking

Final Key High-Yield Points:

- First sign = Microalbuminuria \rightarrow Confirm in 2 of 3 samples.
- Target BP = <130/80 mmHg always.
- Albuminuria + Retinopathy = strong clue for diabetic nephropathy.
- GFR loss is progressive but variable.
- ACEi/ARBs are gold even in normotensive diabetics with microalbuminuria.
- Control sugar early to prevent microalbuminuria progression!
- Biopsy only if atypical features (e.g., hematuria)

Section	Key Points
Definition	- One of the most serious complications of SLE.
	- Caused by nephritogenic autoantibodies (especially anti-
	dsDNA).
Timing	- Typically develops within 5 years of SLE diagnosis.
Pathophysiology	- Immune complex deposition in glomeruli.
	- Loss of GBM negative charge.
	- IgG1 and IgG3 activate complement strongly \rightarrow severe damage.
Epidemiology	- 35% have nephritis at diagnosis.
	- 50–60% develop nephritis within 10 years.
	- More common in females (peak 21–40 years).
Clinical Features	- Systemic SLE symptoms (fatigue, rash, arthritis).
	- Renal symptoms: proteinuria, hematuria, hypertension, edema.
	- 100% of patients have proteinuria!
Laboratory Findings	- ANA positive.
	- Anti-dsDNA high.
	- Low C3/C4 (hypocomplementemia).
	- Urinalysis: RBC casts, proteinuria.
Important Numbers (Clinical	- Proteinuria: 100%.
Features)	- Nephrotic syndrome: 45–65%.
	- Microscopic hematuria: 80%.
	- Granular casts: 30%.
	- Rapid decline in renal function: 30%.
Serological Markers	- High anti-dsDNA.
	- Low complement (C3, C4, CH50).
	- Anti-C1q antibody (specific).

Indications for Renal Biopsy	✓ Do a biopsy if:
	- ↑Creatinine without clear cause.
	- Proteinuria ≥ 1 g/day.
	- Proteinuria ≥ 0.5 g/day + hematuria or cellular casts.
	Rule: ≥0.5g + hematuria/casts = Biopsy now!
Goals of Treatment	©*
	- Preserve renal function.
	- Prevent flares.
	- Minimize treatment toxicity.
	- Improve survival and quality of life.
Immunosuppressive Therapy	- Induction Phase: High-dose steroids + Cyclophosphamide or
	MMF.
	- Maintenance Phase: Low-dose steroids + Azathioprine or MMF.
Alternative Agents	- Calcineurin inhibitors (Tacrolimus, Cyclosporine) for refractory
	cases.
	- May eventually need dialysis or transplant.
Lifestyle Measures	- Control blood pressure.
	- Low-salt diet.
	- No smoking.
	- Control cholesterol.
	- Avoid nephrotoxic drugs (e.g., NSAIDs).
Relapse Risk	- ~25% at 5 years, ~46% at 10 years.
	- Predictors of flare: low C3, low C4, rising anti-dsDNA.
Types of Flares	- Proteinuric (increased proteinuria).
	- Nephritic (increased Scr >30% and/or active urine sediment).
Special Situations	- Pregnancy: Avoid if active nephritis.
	- Transplant : 3-month dialysis period first; recurrence rate <4%.
Memory Tips	
	- ↓C3 + ↑anti-dsDNA = active flare.
	- Proteinuria 100% in lupus nephritis.
	- Positive ANA + positive anti-dsDNA = lupus nephritis strong
	clue.
l	

Final Key High-Yield Points:

- Always think biopsy if unexpected kidney signs appear.
- Induction = attack the disease fast (high dose).
- **Maintenance** = keep disease calm (low dose).
- Target blood pressure in LN = strict control to prevent progression.
- Monitor C3/C4 and anti-dsDNA to catch early flares.