PHEART FAILURE

🔷 1. Frank-Starling Curve

- $CO = HR \times SV$
- SV increases with \uparrow **preload** (to a certain limit).
- **Too much preload = congestion**, pulmonary edema.
- Afterload \uparrow = shifts curve down + right $\rightarrow \downarrow$ CO
- **Inotropy** \uparrow = shifts curve **up** + **left** \rightarrow \uparrow CO

Drugs mentioned:

- Preload reduction is a goal to reduce volume overload in HF.
- Diuretics: increase urine output (reduce volume)
- Venodilators: reduce venous return to the heart
- Vasodilators (e.g., ACE inhibitors): reduce both preload and afterload
- Inotropes (e.g., Dobutamine): increase the contractility when the heart can't pump enough on its own

Clinical Recall Q: Why do we use vasodilators in heart failure? To reduce afterload and improve forward blood flow while also easing the strain on the heart muscle.

W Key: More preload \neq more output always. Overstretch = decompensation.

🔷 2. Pressure-Volume Loop

- $A \rightarrow B$: Isovolumetric contraction (all valves = close)
- $\mathbf{B} \rightarrow \mathbf{C}$: Ejection (LV pressure > aortic pressure) (open aortic valve)
- $\mathbf{C} \rightarrow \mathbf{D}$: Isovolumetric relaxation (all valves = close)
- $\mathbf{D} \rightarrow \mathbf{A}$: Passive filling (open mitral valve)

G Important:

- Stroke volume = EDV ESV
- \downarrow contractility $\rightarrow \downarrow$ ejection $\rightarrow \uparrow ESV \rightarrow$ wider, shorter loop
- \uparrow afterload \rightarrow taller & narrower loop
- Loop shifts reflect cardiac stress.
- In HF, we often see:
 - Increased EDV (because the heart can't eject well)
 - O Reduced Stroke Volume
 - Shifted loops to the right

Ø 3. Initial Compensation in HF

- \downarrow contractility = \downarrow CO \rightarrow triggers:
 - Frank-Starling mechanism: stretch more, contract more
 - Neurohormonal activation (SNS + RAAS)
 - \circ \uparrow Intravascular volume

O Short-term = helpful, long-term = destructive \bigwedge Eventually, this fails:

4. Decompensation

- **Ventricular remodeling** = hypertrophy + dilation
- Myocyte death/apoptosis from ischemia/oxidative stress
- Valvular regurgitation = stretch \rightarrow MR, TR

• Ends in \downarrow CO, organ dysfunction, congestion

NEUROHUMORAL ACTIVATION

♦ 1. SNS

- \uparrow HR, contractility, vasoconstriction

🔷 2. RAAS

- \downarrow perfusion $\rightarrow \uparrow$ renin $\rightarrow \uparrow$ Ang II $\rightarrow \uparrow$ Aldosterone
- Results:
 - Na⁺/H₂O retention
 - \circ Fibrosis
 - \circ Hypertrophy
 - Vasoconstriction
 - Apoptosis, inflammation
 - V Treat with: ACEi, ARBs, Spironolactone

ANGIOTENSIN II EFFECTS

- This slide is a zoom-in on what Angiotensin II does and it's nasty in HF:
- 👉 Vascular:
- Vasoconstriction $\rightarrow \uparrow$ BP and \uparrow afterload
- Endothelial dysfunction → damage to vessel walls
- lormonal:
- ↑ Aldosterone → Na+/water retention
- Cardiac/Cellular:
- Myocyte hypertrophy → thicker heart walls
- Fibroblast proliferation → scarring
- Collagen deposition → stiffness
- Apoptosis → myocyte death

🧳 Others:

- **Pro-thrombotic** \rightarrow \uparrow risk of clot
- **Pro-oxidant** → oxidative damage

😻 Summary: Angiotensin II turns into a villain in heart failure. That's why ACEIs and ARBs are cornerstone therapies!

🔷 3. Natriuretic Peptides (NPs) 🖤

- The good guys: released from heart in overload
- Actions:
 - $\circ \downarrow SNS$
 - Vasodilation
 - Natriuresis
 - $\circ \downarrow RAAS$
 - $\circ \downarrow$ hypertrophy/fibrosis
 - **W** Boosted by: Sacubitril (ARNI combo)

CARDIORENAL SYNDROME

In heart failure, renal perfusion drops > kidney thinks you're hypovolemic > BAD COMPENSATION
 Results:

- \downarrow Renal blood flow
- \downarrow GFR

- \uparrow Renin \rightarrow activates RAAS
- Tubular sodium reabsorption
- \uparrow Vasopressin \rightarrow water retention

This worsens fluid overload, raises preload, and feeds into the vicious cycle of HF.

Wicious cycle where heart and kidney destroy each other

GOLDEN CONCEPTS (Don't ever forget!):

System	Short Term	Long Term
SNS	↑ CO, BP	Toxicity, arrhythmia, downregulation
RAAS	↑ volume, perfusion	Fibrosis, overload, apoptosis
NPs	↑ natriuresis, vasodilation	Protective

N Key Drugs You Must Master:

Drug	Mechanism	Target	
ACEi	↓ Ang-II formation	RAAS	
ARB	Block Ang-II receptors	RAAS	
Beta-blocker	↓ SNS tone	SNS	
Spironolactone	Aldosterone antagonist	RAAS	
Sacubitril	Prevent NP breakdown	NPs	

☞:

- More preload isn't always better.
- NPs = protective while SNS & RAAS = destructive when chronic.
- Cardiorenal syndrome is a deadly feedback loop.
- Block Ang-II = block death.

Deventricular Remodeling after MI

- After MI, the LV starts expanding, wall thinning, and dilating further.
- This **increases volume** at any pressure = \downarrow compliance.
- The weak, stretched wall leads to worsened $EF \rightarrow progression to HF$.
- RAAS and sympathetic activation accelerate this process
- **V** Drugs like ACEIs, ARBs, β -blockers, and MRAs aim to *reverse or slow* remodeling

Q Clinical Findings in HF

- \downarrow Forward output \rightarrow fatigue, dizziness, hypotension.
- Pulmonary congestion \rightarrow dyspnea, orthopnea, PND.
- Systemic congestion → edema, ascites, JVD, weight gain.

 Cycle: ↓ contractility → ↓ SV → LV dilation → ↑ filling pressures → congestion.

Physical Exam in HF

- \downarrow CO \rightarrow tachycardia, low BP, cold limbs, narrow pulse pressure, **pulsus alternans** (end-stage).
- Pulmonary: rales (crackles), pleural effusion.

- Cardiac: displaced PMI, S3 (early filling), MR murmur (due to dilation of LV).
- Systemic: \uparrow JVP, hepatosplenomegaly, ascites, peripheral edema.
- Tip :"LEFT = Lungs, RIGHT = Rest of the body"

Pearl: S3 = volume overload; displaced PMI = dilation; cool extremities = low perfusion priority to vital organs.

Q Diagnostic Studies

- CXR: cardiomegaly, vascular redistribution, interstitial edema, plural effusion
- **EKG**:can be normal , arrhythmias, LBBB, Q waves.
- \triangle Labs: BNP (\uparrow = HF), iron studies (to rule out hemochromatosis), thyroid, ANA+RF, KFT
- \bigcirc **Echo**: wall motion, EF, valve function.
- ⊖ **Cath**: hemodynamics, coronary anatomy, to asses LVEF
- Biopsy: if cause unknown (e.g. myocarditis) or infiltrative diseases (rarely used)

Don't forget: Echo = most essential to confirm HF & measure EF.

EF & Prognosis

- \downarrow LVEF = worse survival.
- It's a major **prognostic marker** in HF.
- Preserved EF = still HF but different management.

Epidemiology & Burden of HF

- Leading cause of admission >65 years.
- Huge **financial burden**: 70% of HF costs = hospitalization.

Tmportant: As population ages + post-MI survival improves = HF prevalence \uparrow .

& Economic Impact

Hospitalization = biggest contributor to cost., (70% due to hospitalization)/ (10% due to pharmacological tx)

🔇 Mortality

- HF has worse prognosis than many cancers, especially lung and prostate/breast.
- ~10% mortality after 30 days, ~20% at 1 year, ~40% at 5 years.
 ☑ Each admission 4% increases mortality risk.

Progression of HF

- HF is **progressive**.
- With each **acute episode**, $QoL \downarrow$, and mortality \uparrow .
- Chronic decline + acute dips = vicious cycle.

Etiology of HF

- **CHD**: main cause (70%).
- valvular disease (MR/AR) 2nd cause , cardiomyopathies 3rd cause ,
- others: postpartum, chemo-induced, toxins.
- Always think: ischemia, valves, cardiomyopathy.

▲ Comorbidities

- Common: HTN, DM, IHD, arrhythmia, CKD, COPD, anemia.
- HTN \rightarrow LV hypertrophy \rightarrow diastolic failure.
- Comorbidities worsen HF & complicate management.

Guideline Development

Level of Evidence	Class of Recommendation
A – multiple RCTs	$I - Benefit >>> Risk \rightarrow SHOULD do it$
B – single/small RCTs	IIa – Benefit > Risk \rightarrow Reasonable
C – expert opinion	IIb – Benefit \geq Risk \rightarrow May consider
	III – No benefit or Harm

Example:

• Giving an ACEI to HFrEF patients is: → Class I, Level A → Means: strong evidence, must do it.

• I A = Mandatory • IIa B = Good idea, but not bulletproof • III C = Don't waste your time or hurt your patient

 \bigcirc *Clinical tip*: Best = A-I. Worst = C-III.

1. Definition of Heart Failure

- **Clinical syndrome** with symptoms + **signs**.
- Caused by structural or functional abnormalities of the heart \rightarrow impaired filling or ejection.

Key concept: Not just low EF, can be preserved EF but dysfunctional filling.

2. Symptoms & Signs

- Symptoms: Dyspnea, orthopnea, PND, fatigue, leg swelling.
- Signs: JVP ↑, gallop S3, displaced apex, murmurs.
- Acute HF = sudden onset or worsening of chronic HF.

3. Classification by LVEF

Туре	EF		
HFrEF	≤40%		
HFpEF	≥50%		
Mid-range (HFmrEF)	41-49% (gray zone)		

- **(b) HFpEF**: preserved systolic function, but diastolic problem (stiff ventricle).
- **(b) HFrEF**: systolic dysfunction, dilated ventricle, weak pump.

4. Subtypes

• **HFpEF** = **concentric hypertrophy**, thick wall, diastolic dysfunction.

- **HFrEF** = eccentric remodeling, dilated LV, systolic dysfunction.
- (a) *Important:* both can have **diastolic dysfunction** but HFpEF has preserved systolic EF.

5. Functional Classification (NYHA)		
Class	Physical Activity Tolerance	
Ι	No limitation	
II	Slight limitation	
III	Marked limitation	
IV	Symptoms at rest	

6. Stages (AHA/ACCF)

Stage	Definition	NYHA Match	
Α	High risk for HF, but no structural heart disease and no symptoms	🗙 (No NYHA class)	
В	Structural heart disease, but no HF symptoms	1	
С	Structural disease + past or current HF symptoms	I, II, III, IV	
D	Refractory HF, requires advanced interventions	IV	

7. Hemodynamic Profile (Warm/Dry system)

	Congested?	Perfused?
Warm & Dry	×	✓ Best case
Warm & Wet	~	~
Cold & Dry	×	×
Cold & Wet	 Image: A set of the set of the	★ Worst case

Q Clinical Examples:

- Warm & Dry: Stable outpatient, well-controlled HF
- Warm & Wet: SOB, crackles, edema but still good BP
- Cold & Dry: Cool hands, low BP, sleepy but no rales or edema
- Cold & Wet: ICU patient fluid overloaded and in shock

8. Symptoms by Side

- Left-sided HF: Dyspnea, orthopnea, PND, cough, crackles, blood sputum.
- Right-sided HF: JVD, peripheral edema, ascites, hepatomegaly, GI symptoms
- JVD + edema + hepatomegaly = think right-sided HF Rales + orthopnea = think left-sided HF

9. Investigations

There are 3 core investigations you must do for every HF patient:

1. ECG (Electrocardiogram)

ESC Recommendation: Class I, Level C

O Purpose:

Shows rhythm (AF, bradycardia, tachycardia)

- Detects conduction defects (e.g., LBBB → CRT indication)
- May show LV hypertrophy or Q waves (old MI)
- Guides treatment: e.g., anticoagulation in AF, pacing, CRT
- **Q** A normal ECG **almost rules out** HF with reduced EF!

2. Chest X-Ray (CXR)

- ESC Recommendation: Class IIa, Level C
- **O** Purpose:
- Helps rule out lung disease as a cause of symptoms
- In HF may show:
- Pulmonary venous congestion
- Interstitial edema
- Pleural effusion

Cardiomegaly

Remember: "If CXR is clean, don't rush to blame the heart."

3. Echocardiography

ESC Recommendation: Class I, Level C

O The most important test in HF — gives a full structural & functional assessment:

Shows:

- Chamber volumes
- Wall thickness
- Systolic function (EF!)
- Diastolic function
- Valve status
- Pulmonary pressures

Q This test confirms the **diagnosis**, classifies the **type**, and directs the **treatment**.

📌 Summary:

"If you suspect HF, get an ECG, a CXR, and an echo — that's your golden triangle. 🖲 No echo? No diagnosis."

10. BNP vs NT-proBNP (cardiac natriuretic peptides)

. 🥥 What is BNP?

BNP = **B**-type Natriuretic Peptide

- A 32-amino acid hormone
- Released by ventricular myocytes
- Stimulated by excessive stretch or volume overload
- Its job = reduce fluid overload and vascular resistance

@ Functions of BNP:

- \uparrow Natriuresis \rightarrow more sodium excreted
- \downarrow Vasoconstriction \rightarrow more vasodilation
- \downarrow **Blood volume** \rightarrow reduces preload
- ↓ Sympathetic tone and RAAS activity
- \Rightarrow Overall = unloads the heart

BNP vs. ANP:

- BNP is ventricular
- ANP is atrial
- BNP has longer half-life (~20 min) \rightarrow More stable to measure in blood
- Ø BNP got its name because it was first isolated from pig brains ("brain natriuretic peptide")

What is NT-proBNP?

N-terminal proBNP = the inactive fragment co-secreted with BNP

- 76-amino acid peptide
- Biologically inactive
- BUT: has a **much longer half-life** ($\sim 1-2$ hours) \rightarrow More reliable marker in labs!

Q Clinical Use:

- Use BNP/NT-proBNP to:
- Diagnose HF in dyspneic patients

- Rule out HF if levels are low
- Track treatment response

Marker	Half-life	Active?	Good for?	
BNP	~20 min	✓ Yes	Acute changes	
NT-proBNP	1–2 hrs	🗙 No	More stable long-term marker	

★ Summary:

.

"The more your heart stretches, the more BNP it screams out — it's the heart yelling for help."

SYNTHESIS IN MYOCYTES

Where is BNP made?

- Mainly in left ventricular myocytes
- Trigger = increased wall stress/stretch due to:
- Volume overload
- Pressure overload

Steps of Synthesis:

- **Pre-proBNP** is made inside the myocyte
- It's cleaved to \rightarrow **proBNP**
- Then split into:

BNP $(32-aa) \rightarrow$ biologically active hormone

NT-proBNP (76-aa) \rightarrow inactive but used as a stable biomarker

Q Clinical Insight:

- More stretch \rightarrow more BNP/NT-proBNP released
- That's why levels correlate with severity of HF
- When treatment works \rightarrow levels go down \square

Additional Triggers:

• Not just volume — ischemia, fibrosis, and inflammation also ↑ synthesis

"BNP is a stress signal from the ventricles — the more they stretch, the louder they scream

1. ACE Inhibitors (ACEIs)

Examples: Enalapril, Ramipril
Mechanism: Inhibits ACE → ↓ Ang II → ↓ vasoconstriction, ↓ aldosterone
Effect:
↓ Afterload
↓ Remodeling
↑ Survival
Side Effects:

- Dry cough († bradykinin)
- Hyperkalemia
- Hypotension
- Renal dysfunction
- Angioedema
 Stop if angioedema (never switch to ARB!)

Examples: Valsartan, Losartan Mechanism: Block AT₁ receptors → ↓ Ang II effects Effect: Same as ACEI but No increase in bradykinin → no cough Side Effects: Similar to ACEI, less angioedema and cough

3. Beta Blockers (BBs)

Examples: Bisoprolol, Carvedilol, Metoprolol succinate **Mechanism:**

- Block b1 receptors = \downarrow HR, renin and remodeling $\rightarrow \uparrow$ filling time
- ↓ sympathetic toxicity
- ↓ myocardial oxygen demand Effect:
 - \checkmark \downarrow Mortality (34% in CIBIS-II) and hospitalization
 - Anti-remodeling
 - X Must be started only in stable HF

Side Effects:

- Bradycardia
- Hypotension
- Cold extremities
- Fatigue
- Sexual dysfunction
- Worsening HF if given too early

Contraindications:

- Acute decompensated HF
- AV block
 Symptomat
- Symptomatic bradycardia
- Severe hypotensio

• 4. MRAs – Mineralocorticoid Receptor Antagonists

Examples: Spironolactone, Eplerenone (selective less hormonal side effects) **Mechanism:** Block aldosterone receptors \rightarrow

✓ ↓ Na⁺/water retention
 ✓ ↓ fibrosis
 ✓ ↓ remodeling
 Effect:
 ✓ ↓ Mortality (30% in RALES)

Indication: Persistent symptoms in HFrEF (EF ≤35%)

Side Effects:

• Hyperkalemia

- Gynecomastia (spironolactone)
- GI upset \bigcirc Avoid if K⁺ \ge 5 or GFR < 30

S 5. Diuretics

Examples: Furosemide (loop|), Bumetanide, HCTZ(thiazides)
Mechanism: Promote natriuresis → ↓ fluid overload
Effect and indications :
✓ Symptom relief ONLY (fluid overload)
× No survival benefit
Side Effects:

- Electrolyte loss $(\downarrow K^+, \downarrow Na^+)$
- Volume depletion
- Hypotension
 Used only if congestion is present

🔊 6. Ivabradine

Mechanism: Inhibits **If (funny)** current in SA node $\rightarrow \downarrow$ HR No effect on contractility **Use:**

- HFrEF patients with **HR** ≥70–75 bpm despite BB
- EF< or equals 35 %
- Sinus rythem
- •

Side Effects:

- Visual disturbances (phosphenes)
- Bradycardia
 Good option if BBs are not tolerated or insufficient

🔊 7. Digoxin

```
      Type:

      • Cardiac glycoside

      Mechanism:

      • Inhibits Na<sup>+</sup>/K<sup>+</sup> ATPase \rightarrow \uparrow intracellular Ca<sup>2+</sup> \rightarrow \uparrow myocardial contractility.

      • \uparrow Vagal tone \rightarrow slows AV node conduction.

      Use in HF:

      • For persistent symptoms despite ACEI/BB/MRA

      • Especially useful in HFrEF + AF (controls ventricular rate)

      ✓ Improves symptoms X No mortality benefit
```

Used in:

- Sinus rhythm + $EF \leq 45\%$
- In patients unable to tolerate BB
- Adjunct to ACEI + MRA in refractory symptoms

 \rightarrow Not first-line. Add only when core drugs optimized.

Dose:	
•	62.5-125 mcg daily
Side effec	ts (toxicity signs):
•	GI: Nausea, vomiting, diarrhea
•	Cardiac: Arrhythmias, AV block
•	CNS: Dizziness, confusion
•	Visual: Blurred vision, green/yellow halos
•	Rash, eosinophilia (rare)
Increased	toxicity risk:
•	Hypokalemia
•	Renal dysfunction
•	Drug interactions (e.g., amiodarone)
Therapeu	tic level:
•	0.5–0.9 ng/mL (toxic >1.2)

Hydralazine + Isosorbide Dinitrate (H-ISDN)

Hydralazine \rightarrow arterial vasodilator $\rightarrow \downarrow$ afterload \downarrow wall stress \rightarrow easier ejectionISDN \rightarrow venous vasodilator $\rightarrow \downarrow$ preload \downarrow congestion \rightarrow lungs feel lighter

Why it Matters

Combo $\rightarrow \uparrow$ CO & \downarrow pulmonary/systemic congestion

Mechanism

Indications

- S Persistent symptoms despite everything else

H-ISDN – The Facts

 \swarrow Dose Titration 25 mg 3-4×/day \rightarrow up to 50-75 mg 4×/day

▲ Side-effects Headache, dizziness, flushing, GI upset, tachycardia, hypotension

3 · Neuro-Hormonal Blockade Trials

Class	Landmark Trial	RRR	ARR
ACE-I	SOLVD	16 %	4.5 %
ARB	CHARM-Alt.	17 %	3 %
β-Blocker	CIBIS-II	34 %	5.5 %
MRA	RALES	30 %	11 %

S These four pillars built modern HFrEF therapy.

 \cdot ARNI = Sacubitril + Valsartan

Piece Action Net Effect

Valsartan AT₁-blocker ↓ afterload & remodeling

Sacubitril Neprilysin inhibitor \uparrow BNP/ANP \rightarrow natriures is & vasodilation

- **PARADIGM-HF** \rightarrow 20 % \downarrow CV death/HF admissions vs. enalapril
- Indication: Symptomatic HFrEF who tolerate ACEI (stop ACEI ≥ 36 h before switch)*

SGLT-2 Inhibitors

Drug Examples	dapagliflozin, empagliflozin
Mechanism	Glucuretic + natriuretic \rightarrow osmotic diuresis, anti-fibrotic
Trials	DAPA-HF , EMPEROR-Reduced $\rightarrow \downarrow$ death & admissions in diabetics and non-diabetics
Caveats	Genital infections, volume depletion, \triangle avoid GFR < 30 ml/min

✓ · Class-of-Evidence Snapshot

Therapy	AHA	ESC	HFSA	NICE
ACEI / ARNI / ARB	I-A	A	I-A	A
β-Blocker	I-A	A	I-A	A
Diuretics	I-C	А	_	С

→ MRAs join core when symptoms persist.
 → H-ISDN, Ivabradine, Digoxin = niche or add-on roles.

 \bigcirc · 2021 ESC Roadmap for HFrEF (EF \leq 40 %)

- 1. Start ACEI (or better ARNI)
- 2. Add β -blocker (GDMT dose)
- 3. Add MRA
- 4. Add SGLT-2i

All four = Class I-A. $ACEI \rightarrow ARNI$ upgrade when stable (36 h washout).

\Lambda · Therapy by Stage $(A \rightarrow D)$

Stage	Focus	Key Moves
Α	Risk	BP, lipids, DM, lifestyle, ACEI in vascular disease
В	Structure, no symptoms	$ACEI/ARB/\beta B \pm ICD/repair$
С	Symptoms	"Fantastic 4" + diuretics ± digoxin, Ivabradine, H-ISDN, devices
D	Refractory	Inotropes, LVAD, transplant, palliative

🚱 · ABCD Mnemonic

Letter	Drug	Primary Purpose
A	ACEI / ARNI	Neuro-hormonal brake ↓ afterload
В	β-Blocker	↓ HR & remodeling
С	MRA	Blocks aldosterone (fibrosis)
D	Diuretic	Treats congestion (symptom only)

C Add-ons: H-ISDN, Ivabradine, Digoxin, CRT/ICD.

↔ · Left Bundle Branch Block (LBBB)

- QRS \geq 120 ms = definition
- Causes **dyssynchrony** $\rightarrow \downarrow EF \rightarrow \square$ opens door to **CRT** (esp. QRS ≥ 130 ms).

\mathbf{V} · ICD Essentials

Why? Stops $VT/VF \rightarrow$ saves life (does NOT raise EF)

Secondary Prior arrest, sustained VT/VF

Primary $EF \le 35$ %, NYHA II–III, >40 days post-MI, on GDMT ≥ 3 mo, expected > 1 yr survival

- Synchronizes $RV + LV \rightarrow \uparrow CO, \downarrow LV$ volumes, $\uparrow EF$
- Cuts sympathetic surge & admissions
- Most powerful in LBBB with wide QRS

CRT Indications

Must-havesDetailsNYHA II-IVSymptomaticEF ≤ 35 %Systolic failureSinus rhythmFor timingQRS ≥ 130 msPrefer LBBB

 \bigcirc No benefit in narrow QRS or non-LBBB.

GOLDEN PEARLS:

- ACEI/ARB/ARNI + BB + MRA = Foundation of HFrEF treatment
- $\bullet \quad SGLT2i + ARNI \rightarrow \text{Latest breakthrough combo}$
- BB must be started ONLY when patient is stable
- Always check K⁺ and Cr before/after starting RAAS blockers
- Digoxin is for symptoms—not survival!

Drug Class	Mechanism	Mortality ↓	Used For	Key Notes
ACEI	\downarrow Ang II, \downarrow aldosterone, \downarrow afterload	Yes (SOLVD)	All HFrEF patients unless contraindicated	Causes cough, ↑ bradykinin, angioedema risk
ARB	Blocks Ang II receptors	Yes (CHARM)	If intolerant to ACEI (no cough)	Less angioedema than ACEI
ARNI	↑ BNP (sacubitril), blocks Ang II (valsartan)	Strongest	Replace ACEI/ARB if patient stable	Wait 36 hrs after stopping ACEI before starting
BB	\downarrow HR, \downarrow SNS, \downarrow remodeling	(CIBIS)	Only in stable HFrEF patients	Don't use in acute decompensation
MRA	Blocks aldosterone, ↓ fibrosis	Yes (RALES)	Add-on if $EF \le 35\%$	Monitor K ⁺ and renal function
SGLT2 inhibitors	Osmotic diuresis, ↓ preload/afterload	✓ Yes	Any HFrEF pt (even without DM)	Prevent hospitalizations
Diuretics	Promote Na ⁺ & H ₂ O excretion	🗙 No	For symptom relief (congestion, edema)	No mortality benefit
Ivabradine	Inhibits If channel $\rightarrow \downarrow$ HR	× No	HR ≥70–75 despite max BB	No inotropy effect
Digoxin	↑ Inotropy, ↓ AV node conduction	× No	Symptom control esp. with AF	Narrow therapeutic window
Hydralazine + ISDN	↓ afterload (Hydralazine), ↓ preload (ISDN)	✓ in Blacks (A-HeFT)	Black pts or ACEI/ARB- intolerant	Headache, hypotension common