Lecture 12: Liver Mets

Metastasis Sites:

- 1. **GI tract** Stomach, pancreas, colon
- 2. Lung
- 3. Kidney
- 4. Prostate
- 5. **Melanoma** (Eye & skin)
- 6. Breast
- 7. **Bile duct** (*Cholangiocarcinoma*)

Why is the liver a common site?

- 1. Supplied by both portal and systemic circulation
- 2. Sinusoidal epithelium allows easy cancer cell penetration
- 3. **Produce hormonal and growth factors** (e.g., adhesion molecules)
- 4. **Anatomically close** to other organs

■ Important Note:

• In the past, patients with liver mets were not treated, but now they are!

Clinical Presentation:

- Often asymptomatic
- Depends on primary tumor and extent of liver mets
- Some may show:
 - Abdominal pain
 - o Jaundice
 - o Pruritis
 - Carcinoid syndrome →occurs in cases of mets due to serotonin and vasoactive peptide release and presents with: 1- Flushing 2- Right-sided heart lesions 3- Wheezing 4- "4 D's": Diarrhea, Dermatitis, Dementia, Death

A Physical Exam (PE):

- Hepatomegaly
- Friction rub
- Ascites

/ Labs:

- X No specific labs for liver metastases
- **CEA**: a marker onlyyyyyy, but **can be negative** even in mets

Imaging:

- 1. **Ultrasound (US)** most used
- 2. **CT**
- 3. MRI most sensitive
- 4. **PET/CT** with or without contrast

▲ Final Note:

• Specific liver imaging is not needed in disseminated/inoperable disease

1. Ultrasound (US)

4 Types:

Type of US	Key Features	Advantages	Limitations	Extra Notes
Transabdominal US (US)	- Performed over abdominal wall- Needs large lesions to be visible	- Most commonly used imaging modality for screening liver metastasis- Low cost, portable, no radiation	- Lower sensitivity than CT/MRI- Especially poor for small lesions < 2 cm- Operator dependent	- Lesions may appear hypoechoic, hyperechoic, cystic, or mixed echogenic
Contrast-enhanced US (CEUS)	- Uses special IV contrast to improve accuracy- Useful for equivocal masses on transabdominal US	- Accura <mark>cy similar</mark> to CT/MRI- Helps characterize lesions based on enhancement pattern	- Less widely available	- Benign lesions enhance more than liver- Malignant lesions enhance less (portal-venous phase)
Endoscopic US (EUS)	- US probe at tip of endoscope- Done via upper GI endoscopy	- Detects smaller lesions as it's closer to the organ- Diagnostic + therapeutic (FNA, drainage)	- Not often used for liver imaging	- Excellent for pancreatic tumors, cysts, and liver mets near stomach/duodenum
Intraoperative US (IOUS)	- Probe placed directly on liver during surgery (open/ laparoscopic)	- Detects 5–10% of missed lesions- High resolution- Most accurate for small, deep lesions	- Only available intraoperatively	- Often changes surgical management plan- Crucial in determining resectability and prognosis

2. CT with contrast (Triphasic)

- Don't use without contrast unless mets are hypervascular (with contrast = more accurate)
- like:
- o Carcinoid
- Islet cell tumors
- Renal cell carcinoma
- o Calcifications
- We order Triphasic CT:
 - Arterial phase → good for hypervascular mets (e.g., NET)
 - \circ Portovenous phase \rightarrow good for hypovascular mets (e.g., colon CA)
 - o delayed

3. MRI

- Use T1 and T2 with 2 phases
- T1: anatomical
- T2: shows increased signal intensity (opposite of T1)
- Helps with post-chemo and for fatty liver diagnosis

4. PET/CT

- Most cancer cells depends on **glucose**
- So we use it and We add **18-FDG** instead of carbon label
- PET shows abnormality but not exact location
 - ➤ Example: lesion on left of abdomen only
 - ➤ But CT helps to identify the exact organ (e.g., liver vs spleen)

Histopathology

• Used when you know there's a lesion but don't know the diagnosis

- Based on biopsy \rightarrow 3 histo types: (initial **light microscope**)
 - 1. Poorly differentiated carcinoma / adenocarcinoma → doesn't match cells of primary tumor
 - 2. Well-differentiated adenocarcinoma → resemble cells of the (cells of origin) primary tumor
 - 3. Squamous carcinoma

✓ Use **immunohistochemistry** to:

- Identify site of origin
- Distinguish SCC or poorly differentiated tumors

CRLM (Colorectal Liver Metastases)

- Treatment depends on type of liver mets
- Mets can be:
 - Metachronous: for e.g. the pt got dx with colorectal CA and had a colectomy then 1-2 years later presented with liver metastasis. (more than 6 months after dx of primary tumor)
 - O Synchronous: for e.g. the patient had a concomitant liver metastasis along with a primary tumor. (within 6 months of dx of primary tumor)

Management can be surgical resection and there are many types of surgical resection ranging from nonanatomical resection/ wedge resection to extended hepatectomy reaching up to liver transplantation. * Note: A patient with fally liver needs at least you of the liver * if diffused bilateral - D Chemotherapy (High dose with minimal ode effects) This management mentioned in this slide is exclusively for CRLM. Management Neuroendocrine tumors have different management. Like RFA -> Radiofrequency CRLM therapy ablation, microwave ablation or cryotherapy We can also combine these modalities together for e.g. -> doing surgery as well as other therapies like RFA and then give the patient Arterial Infusion (HAI) chemotherapy which can be neoadjuvant (preoperatively) or adjuvant chemotherapy (postoperatively).