# Neonata Jaundice

Eman Badran
Professor of Pediatrics

Fifth year medical students

### Definition

Neonatal jaundice:



# Yellowish discoloration of the skin and/or conjunctiva caused by bilirubin deposition

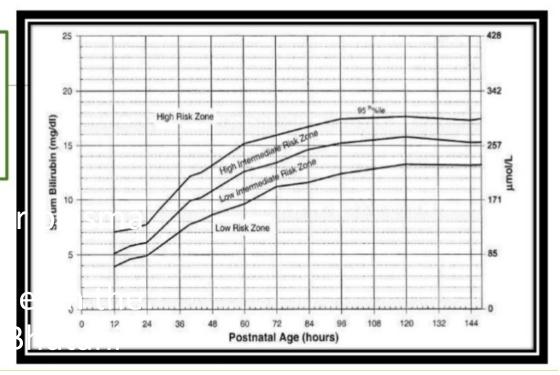
### Definition

### Hyperbilirubinemia

Bilirubin > normal level

 The state of excessive amount of bile pigment billirubin in the blood visibly manifested as jaundice. TSB>>1 mg/dL (17.1 micromol/L),




#### **Definitions**

<u>Significant neonatal hyperbilirubinemia</u> in <u>infants ≥35</u> weeks gestational age (GA) is defined as :

TSB >95 percentile on the hour-specific Bhutani nomogram

Normogram for designation of Hyperbilirubinemia risk based on hour specific bilirubin

Adapted from bhutani et al.



significant elevation of total serum bilirubin (TSB) levels:

it means requiring close surveillance or treatment

#### **Definitions**

### Severe neonatal hyperbilirubinemia

Defined as a Total serum Bilirubin
>25 mg/dL (425 micromol/L) in Term Newborns .

Ref

A Bhutani VK, Johnson LH
Clin Chem. 2004 Mar; 50(3):477-80.

It is associated with an increased risk for bilirubininduced neurologic dysfunction (BIND).

#### BIND

Bilirubin-Induced Neurologic Dysfunction

- Due to brain damage from free bilirubin
- that crosses the bloodbrain barrier and binds to brain tissue as evidenced by both molecular
- and cause cytological injuries of brain cells

### Real Life Scenario

- 3 days old (73 hrs),
- BW=2.7 kg
- male,
- born at 36 wks.
- Mom is primi,
- Mother B.group A +.

- ☐ He is breast feeding exclusively.
- Mother brings him to your office because he is sleepy and feeding less today.
- ☐ Exam: he is hard to arouse and has shrill cry.
- ☐ looks jaundiced.
- ☐ Weight 2.3kg.

```
✓ Total bili 25 mg/dl (425 µmol/L).
```

- ✓ Indirect 23 mg/dl (391 µmol/L).
  - √ Hgb 13.5 gm/dl
  - ✓ direct Coombs is negative.

# What is your diagnosis? (BIND)

☐Bilirubin-Induced Neurologic Dysfunction (BIND)

- ☐ Acute signs = Acute Bilirubin Encephalopathy (ABE)
  - ☐ include:
    - ☐ Change level of consciousness (lirritability alternating with increasing lethargy then and coma )
    - poor feeding then cessation of feeding
    - ☐ hypertonia (retrocollis, opithotonus, **shrill cry**;
    - ☐ Seizure bicycling movements (possible seizures),
    - □ fever
- ☐ Kernicterus is the chronic and permanent sequelae of BIND.

### Real Life Scenario

- 3 days old (73 hrs),
- BW=2.7 kg
- male,
- born at 36 wks.
- Mom is primi,
- Mother B.group A +.

- ☐ He is breast feeding exclusively.
- Mother brings him to your office because he is sleepy and feeding less today.
- ☐ Exam: he is hard to arouse and has shrill cry.
- ☐ looks jaundiced.
- ☐ Weight 2.3kg.

```
✓ Total bili 25 mg/dl (425 µmol/L).
```

- ✓ Indirect 23 mg/dl (391 µmol/L).
  - √ Hgb 13.5 gm/dl
  - ✓ direct Coombs is negative.

### Objectives

Why this lecture Why this lecture

Bilirubin metabolism

What special in neonates

Types and Causes of neonatal Jaundice

Breast feeding and hydration

Assessment of neonate at risk of sever hyperbilirubinemia

Management

Guidelines

Work UP

Treatment

Prevention

treatment

### **Epidemiology of Jaundice**

Why this lecture

Commmon



- 85% of infants > 35 weeks gestation have visible jaundice due to hyperbilirubinemia in the first week after birth — Bhutani, Stark et al, J Pediatr 2012 Epub
- Nearly all preterm newborns have hyperbilirubinemia
- -10% of term.

- 25% of late preterm

require intervention require intervention

#### Bilirubin-Induced Neurologic Dysfunction (BIND)

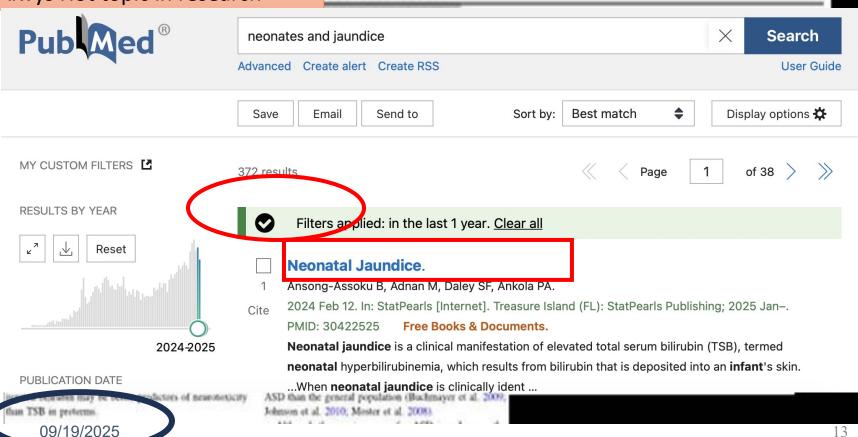
Why this lecture

- Acute sequelae of BIND :

Acute signs (Acute Bilirubin Encephalopathy)

Has a complication

Chronic and permanent sequelae of BIND


Kernicterus: it is chronic sequelae

### **Neonatal Jaundice is HOT topic in Paediatric Journals** Why this

lecture

Alwys Hot topic in research

(2011) 179:461-467



#### Severe Neonatal Hyperbilirubinemia and Adverse Short-Term Consequences in Baghdad, Iraq

2011

Numan Nafie Hameed<sup>a</sup> Alaa' Muhamed Na' ma<sup>a</sup> Rohan Vilms<sup>b</sup> Vinod K. Bhutani<sup>b</sup>

<sup>a</sup>Division of Pediatrics, College of Medicine, Baghdad University and Children Welfare Teaching Hospital Medical City Complex, Bab Al-Muadham, Baghdad, Iraq; <sup>b</sup>Department of Neonatal and Developmental Medicine, Lucile Packard Children's Hospital, Stanford University, Palo Alto, Calif. USA

#### **Key Words**

Severe neonatal hyperbilirubinemia · Newborn jaundice · Acute bilirubin encephalopathy · Kernicterus

#### Abstract

Background: Severe neonatal hyperbilirubinemia, when unmonitored or untreated, can progress to acute bilirubin encephalopathy (ABE). Initiatives to prevent and eliminate post-icteric sequelae (kernicterus) are being implemented to allow for timely interventions for bilirubin reduction. Objectives: We report an observational study to determine the clinical risk factors and short-term outcomes of infants admitted for severe neonatal jaundice. Methods: A post-discharge medical chart review was performed for a cohort of infants admitted for management of newborn jaundice to the Children Welfare Teaching Hospital during a 4-month period in 2007 and 2008. Immediate outcomes included severity of hyperbilirubinemia, association of ABE, need and impact of exchange transfusion, and survival. Short-term post-discharge follow-up assessed for post-icteric sequelae. **Results:** A total of 162 infants were admitted for management of severe jaundice. Incidences of severe sequelae were: advanced ABE (22%), neonatal mortality within 48 h of admission (12%) and post-icteric sequelae (21%). Among the cohort 85% were <10 days of age (median 6 days, IQR 4-7

days). Readmission total serum bilirubin ranged from 197 to 770  $\mu$ M; mean 386  $\pm$  108 SD  $\mu$ M (mean 22.6  $\pm$  6.3 SD mg/dl; median 360, IQR 310-445 μM). The major contributory risk factor for the adverse outcome of kernicterus/death was admission with advanced ABE (OR 8.03: 95% CI 3.44-18.7), Other contributory factors to this outcome, usually significant, but not so for this cohort, included home delivery sepsis, ABO or Rh disease. Absence of any detectable signs of ABE on admission and treatment of severe hyperbilirubinemia was associated with no adverse outcome (OR 0.34; 95% CI 0.16-0.68). Conclusions: Risks of mortality and irreversible brain injury among healthy infants admitted for newborn jaundice are urgent reminders to promote education of communities, families and primary health care providers, especially in a fractured health system. Known risk factors for severe hyperbilirubinemia were overwhelmed by the effect of advanced ABE. Copyright © 2011 S. Karger AG, Basel

#### Introduction

All newborns are at risk for jaundice or some degree of hyperbilirubinemia [1, 2]. Extreme neonatal hyperbilirubinemia, especially when unmonitored or untreated, is associated with chronic bilirubin encephalopathy or



### Objectives

Why this lecture

#### Bilirubin metabolism

#### Bilirubin measurement

What special in neonates

Types and Causes of neonatal Jaundice

Breast feeding and hydration

Assessment of neonate at risk of sever hyperbilirubinemia

Management

Guidelines

Work UP

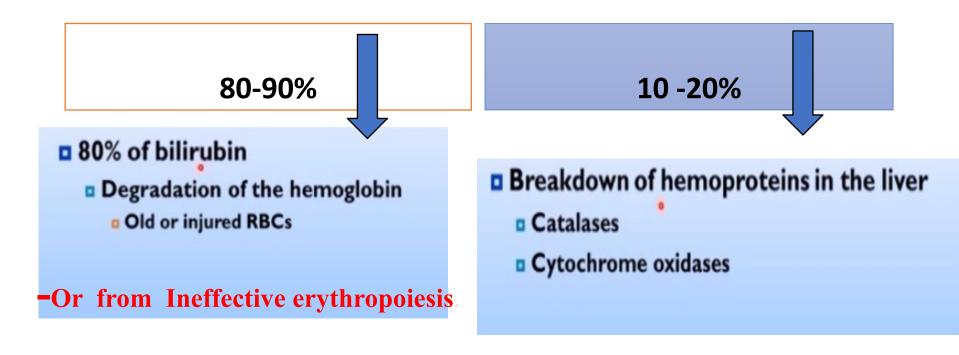
**Treatment** 

Prevention

treatment

### Why to know the bilirubin production and metabolism

To Know the cause

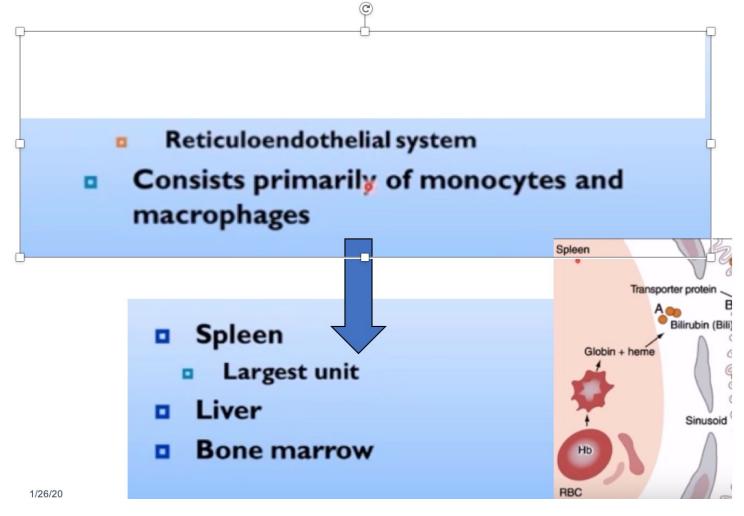

- Physiologic

- Pathologic

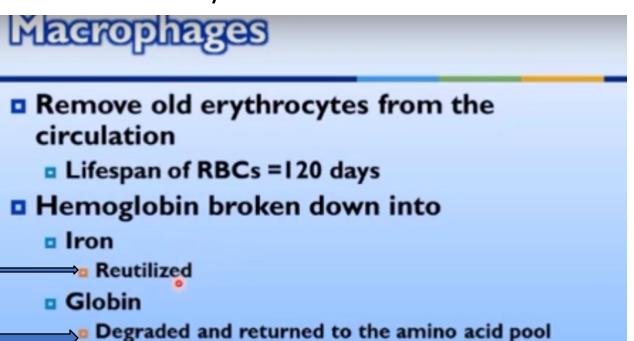
### This is review

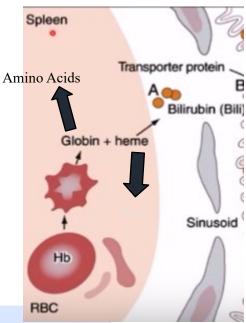
Can be skipped slide 20-37

### Bilirubin production: Source



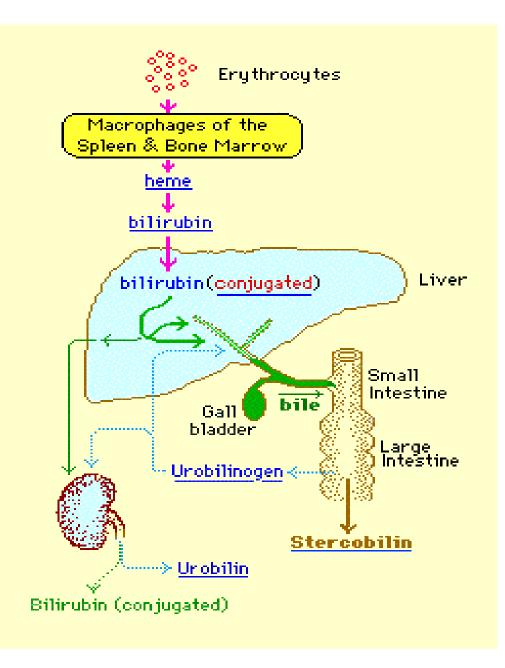

#### Note:


Ineffective erythropoiesis =. Destruction of newly formed RBC in bone marrow itself


19

#### Site of bilirubin metabolism




### Bilirubin synthesis



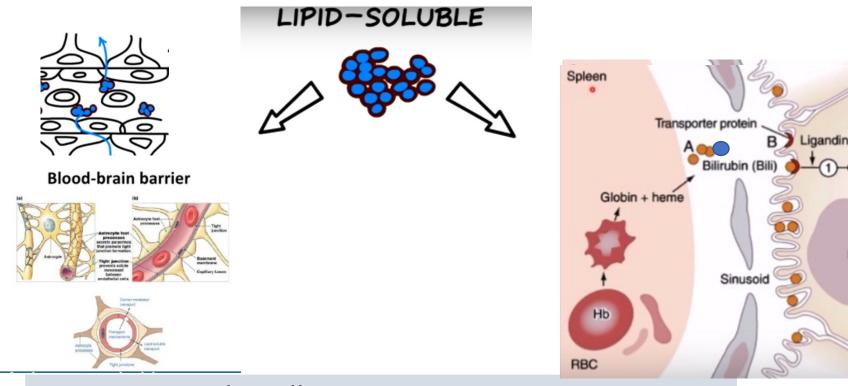




09/19/2025

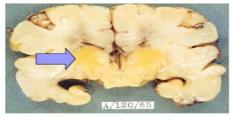


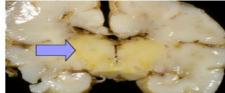
Why to know the


Bilirubin

Production

&


Metabolism


### Unconjugated Bilirubin in plasma



- Bound to albumin (reversible binding)
- Can be displaced if
  - Drugs (valium, ceftriaxone, sulfa)
  - Free fatty acids

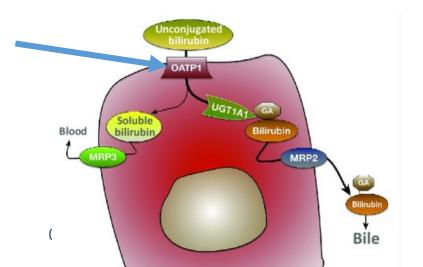
### Unconjugated Bilirubin (UB)

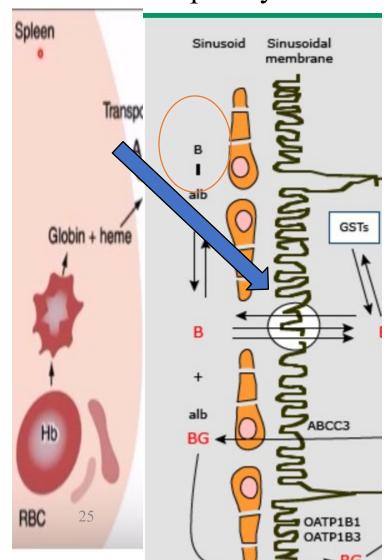




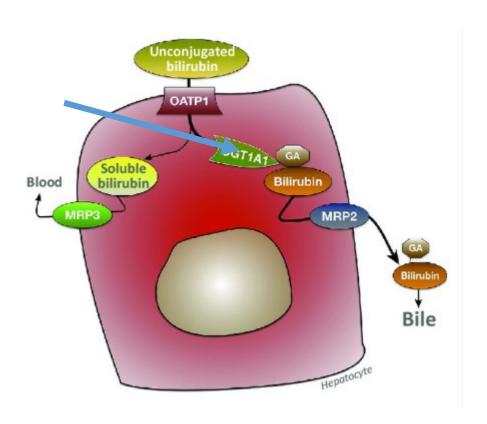
- Not soluble in water
- Potentially toxic
- Made soluble and less toxic by its reversible, binding to albumin No bilirubin in urine

Normal level


- Bilirubin in blood tightly bound to albumin
- Cannot appear in the urine
  - Albumin not filtered by glomerulus
  - Liver disease
  - Biliary obstruction


Unless

- < 1.5 mg/dL</p>
  - Almost entirely bilirubin (unconjugated)
    - Tightly but reversibly bound to albumin

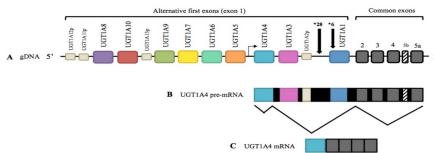

### Hepatic uptake – Circulating bilirubin Hepatocyte

- Bilirubin is transported to the liver Through carrier proteins
  - organic anion transporter protein OATP-2



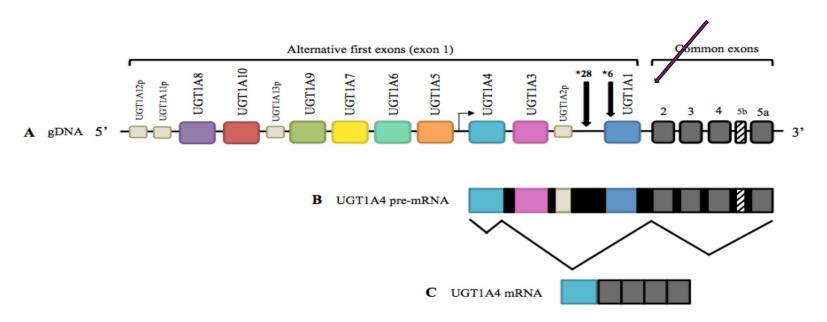


### conjugation




#### Role of uridine diphosphate glycosyltransferase Enzyme

conjugation is catalyzed by the enzyme **U**ridine diphosphate **g**lycosyl **t**ransferase 1A1 (UGT1A1 Enzyme)

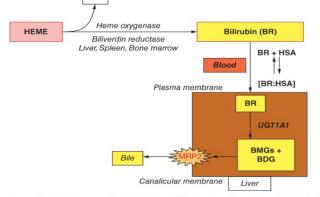

" UGT1A1 gene (ID: 54658) is a part of a complex locus

encoding 13 UDP-glucuronosyltransferases)



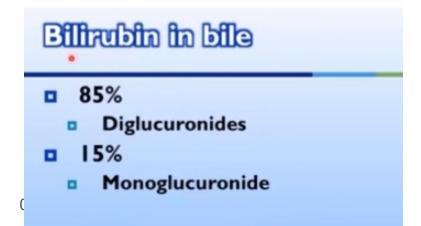
What does UGT1 stand for?
UGT1A! stands for
"UDP-glucuronosyltransferase family 1

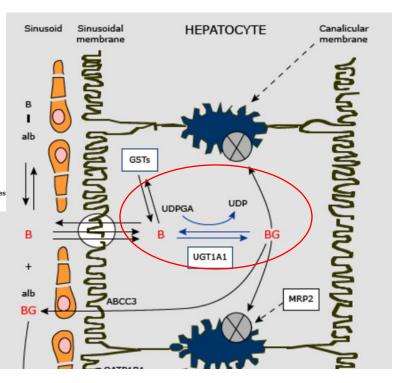
## gene: uridine diphosphate-glucuronosyltransferase-1A1 (UGT1A1)




conjugation is catalyzed by the enzyme **U**ridine diphosphate **g**lycosyl **t**ransferase 1A1 (UGT1A1 Enzyme)

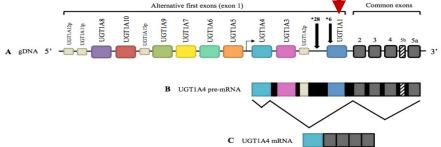
" UGT1A1 gene (ID: 54658) is a part of a complex locus encoding 13 UDP-glucuronosyltransferases)

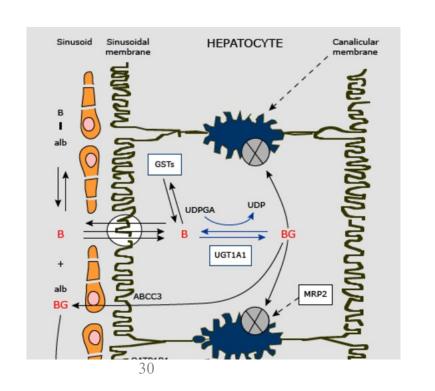

### Conjugation – In Hepatocytes


 $Role\ \underline{of}\ :$  uridine diphosphogluconurate glucuronosyltransferase (UGT1A1)



Source: David K. Stevenson, Ronald S. Cohen, Philip Sunshine: Neonatology: Clinical Practice and Procedures www.accesspediatrics.com Copyright @ McGraw-Hill Education. All rights reserved


#### Actively excreted into bile





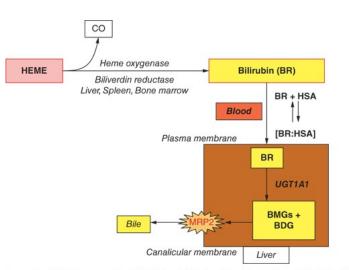

Ethnic variation in conjugation ability

- Polymorphisms in the UGT1A1 gene
  - Due to differences in the number of thymine-adenine (TA) repeats in the promoter region of the gene
  - vary among individuals of Asian, African, and Caucasian ancestry
  - These polymorphisms correlate with decreases in UGT1A1 enzyme activity resulting in increased total bilirubin levels.





### Bilirubin Conjugation abnormalities in liver


#### Conjucation abnormalities:

- UGT1A1 polymorphism
- Crigler Najar Syndrome
- Gilber Syndrome
- Inhibitory factors for hepatic UGT1A!

#### Inhibitory factor(s) for hepatic UGT1A1

- Can be secreted in the milk of some mothers (breast milk jaundice).
- Can be present in maternal plasma may be transplacentally transferred to the fetus (the Lucey Driscoll syndrome).

## Biliary excretion —for Hepatocytes Role of : Multi resistant associated proteins 2 (MRP2)

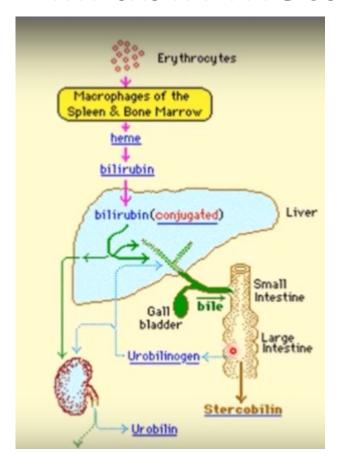


Source: David K. Stevenson, Ronald S. Cohen, Philip Sunshine: Neonatology: Clinical Practice and Procedures www.accesspediatrics.com Copyright @ McGraw-Hill Education. All rights reserved. Actively transported into the bile canaliculus

ATP-dependent export pump

Protein in the hepatocyte apical membrane

Multidrug resistance-associated protein 2


Enhanced bile flow by phenobarbital

### Dubin-Johnson syndrome

- Abnormal MRP2 (multidrug resistanceassociated protein 2)
- Failure to actively excrete conjugated bilirubin into the biliary cannaliculi
  - Conjugated bilirubin increases in the blood

09/19/2025

### Bilirubin metabolism In adult

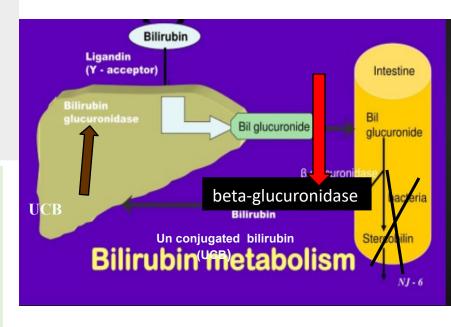


Some is urobilonogen go to the blood reach the kidney and excreted as o urobilin that give yellow color.

### Unconjugated bilirubin

- Reduced by normal gut bacteria
  - Colorless urobilinogen

#### Urobilinogen


- Oxidized in the colon to colored stercobilinogen
- **85**%
  - **■** Excreted in feces as stercobilinogen
- **15%** 
  - **■** Enterohepatic circulation
    - Passively absorbed into the portal venous blood
      - Enter the liver
      - Re-excreted by liver into the intestine

34

# Bilirubin metabolism in **neonate** (Entero-hepatic circulation **EHC**)

- Neonates have beta-glucuronidase in the intestinal mucosa
- It deconjugates the conjugated bilirubin to unconjugated bilirubin (UCB)

UCB fraction is partially reabsorbed through the intestinal wall and recycled into the circulation, a process known as the "EHC of bilirubin". undergoes EHC



Excessive amounts of bilirubin are available for reabsorption in : obstruction of the upper intestinal tract, delayed passage of meconium, or fasting ( decrease transient time )

#### Table1: Risk Factors for Developing Significant Hyperbilirubinemia<sup>(19)</sup>

Lower gestational age (i.e. risk increases with each additional week less than 40 weeks)

Predischarge total serum bilirubin (TSB) concentration close to the phototherapy threshold

Hemolysis from any cause, if known or suspected based on a rapid rate of increase in the TSB of >0.3 mg/dL per hour in the first 24 hour or >0.2 mg/dL per hour thereafter.

Phototherapy before discharge

Parent or sibling requiring phototherapy or exchange transfusion

Family history or genetic ancestry suggestive of inherited red blood cell disorders, including glucose-6-phosphate dehydrogenase (G6PD) deficiency

Exclusive breastfeeding with suboptimal intake

Scalp hematoma or significant bruising

Down syndrome

Macrosomic infant of a diabetic mother





معبد هرقل: قام بتشييده الإمبراطور الروماني أوريليوس سنة 161م، ولم يبق منه إلا الواجهة المؤلفة من ستة أعمدة، ارتفاه كل عمود حوالي 30 قدم: جبل القلعه

### When to Measure TSB

- If Jaundice < 12 hours</li>
- All babies ≥12 h old must have TSB or TcB measured before discharge
- If baby is discharged before 12 h (e.g., home births)
  - → arrange bilirubin check within the first day.

### When to Measure TSB

- If test newborn screen is needed
- A baby with jaundice <24 h or rapid rise in bilirubin → always get a serum TSB
- All babies ≥12 h old (even no jaundice) must have TSB or TcB measured before discharge
  - If baby is discharged before 12 h (e.g., home births) → arrange bilirubin check within the first day.

#### When test newborn screen is needed

- Test screen for
  - Maternal blood group (ABO and Rh)

#### and

red cell

 antibody as part of routine prenatal care.

- Do test newborn screen
- If the maternal antibody screen is positive or unknown at time of delivery, newborn
- testing should include all:
  - Atotal serum bilirubin (TSB),
  - Hemoglobin, reticulocyte count, blood smear
  - Direct antiglobulin test (DAT), and blood group
  - preferably obtained from cord blood.
  - Monitor these neonates closely for the development of early (<24 hours postnatal age) hyperbilirubinemia.

Bilirubin measurement

Transcutaneous bilirubinometer

Total serum
bilirubin levels
(TSB)

## 3. When to Confirm TcB with Serum TSB

#### Transcutaneous bilirubinometer ( TcB)

#### Remember:

A baby with **jaundice**<24 h or rapid rise in
bilirubin → always get
a serum TSB



A TcB value more than 12 – 14 mg/dl needs confirmation by TSB examination.

| Situation                                                     | Action                                                               |  |
|---------------------------------------------------------------|----------------------------------------------------------------------|--|
| TcB is within 50 μmol/L (≈ 3 mg/dL) of phototherapy threshold | Do a confirmatory <b>TSB</b>                                         |  |
| TcB is <b>above 250 μmol/L (≈ 14.6 mg/dL)</b>                 | Do a confirmatory <b>TSB</b>                                         |  |
| TcB clearly below threshold, baby well                        | TcB alone is acceptable (but always interpret with clinical context) |  |

09/19/2025

### Objectives

Why this lecture
Bilirubin metabolism
Bilrubin measurement

#### What special in neonates

**Types and Causes of neonatal Jaundice** 

Breast feeding and hydration

Assessment of neonate at risk of sever hyperbilirubinemia

Management

Guidelines

Work UP

**Treatment** 

Prevention

treatment

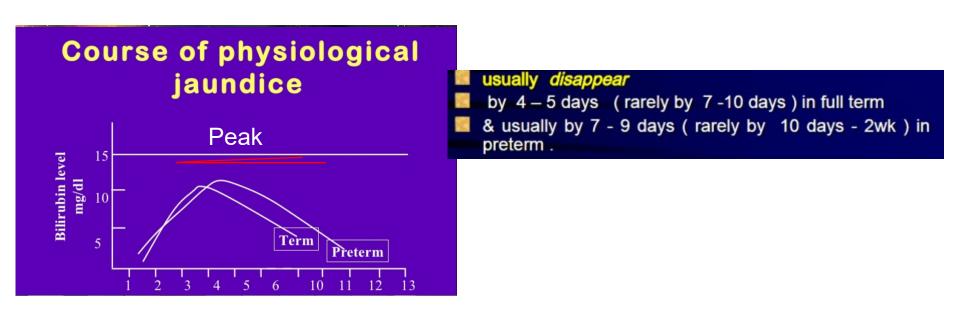
09/19/2025

## **Types of Neonatal Jaundice**



(Increase B glucuronidase)

### Mechanism of Physiologic Jaundice


1-Increased bilirubin production Erythrocytes Increased rbc's Macrophages of the and ineffective erythropoiesis Spleen & Bone Marrow heme Shortened RBC lifespan bilirubin bilirubin(conjugated) 2-Immaturity Immature hepatic uptake Small Intestine immature conjugation (paucity of bladder ligandin and decrease UGTA1) Large Intestine Unobilinogen⊰ decreased hepatic excretion of bilirubin Stercobilin 3-Increased enterohepatic Circulation Bilirubin (conjugated)

# Physiologic Jaundice Physiologic Physiology Physio

## Physiologic Jaundice: 1. Has Pattern

HAS PEAK

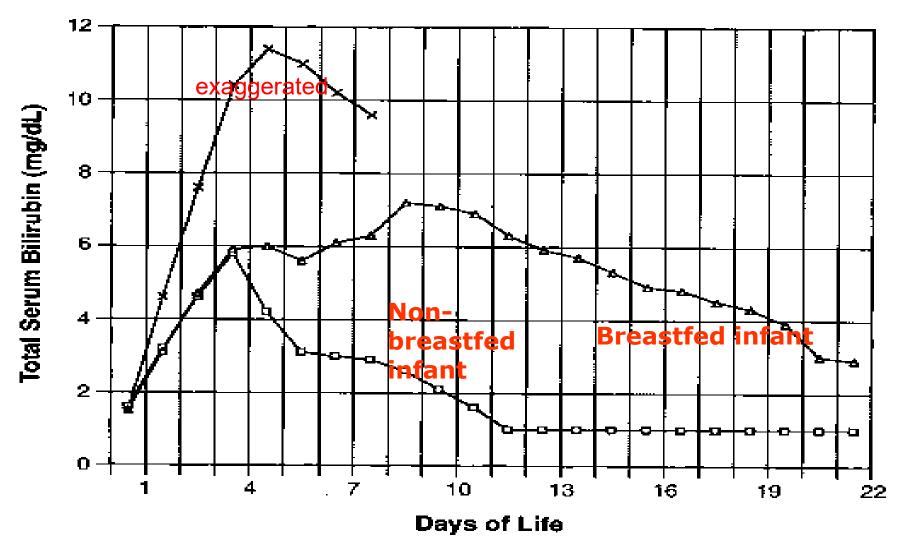
Peak
3-4 DAYS IN TERM
5- 7 days in preterm



## Physiologic Jaundice: 2. Baby is well



## Physiologic Jaundice 3.- Bilirubin rise trend


Increase should <than 0.2 mg/dL / hour.

- Rate of rise should <5 mg/dL per Day

- Mean Peak is according to race (less than 15)

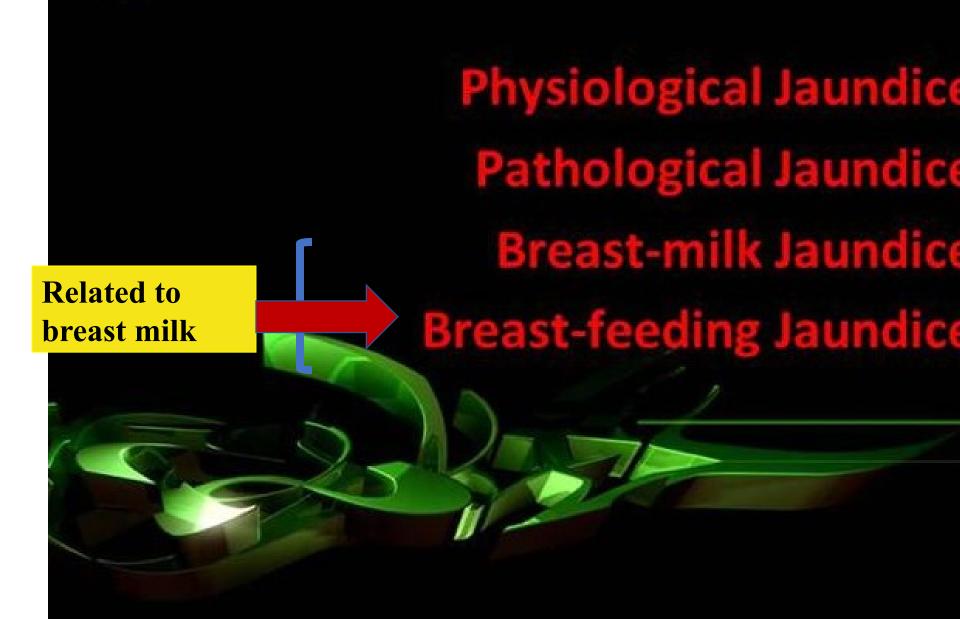
### Physiologic Jaundice:

## 4. May be exaggerated



## Physiological jaundic may be exaggerated (increase peak & duration)

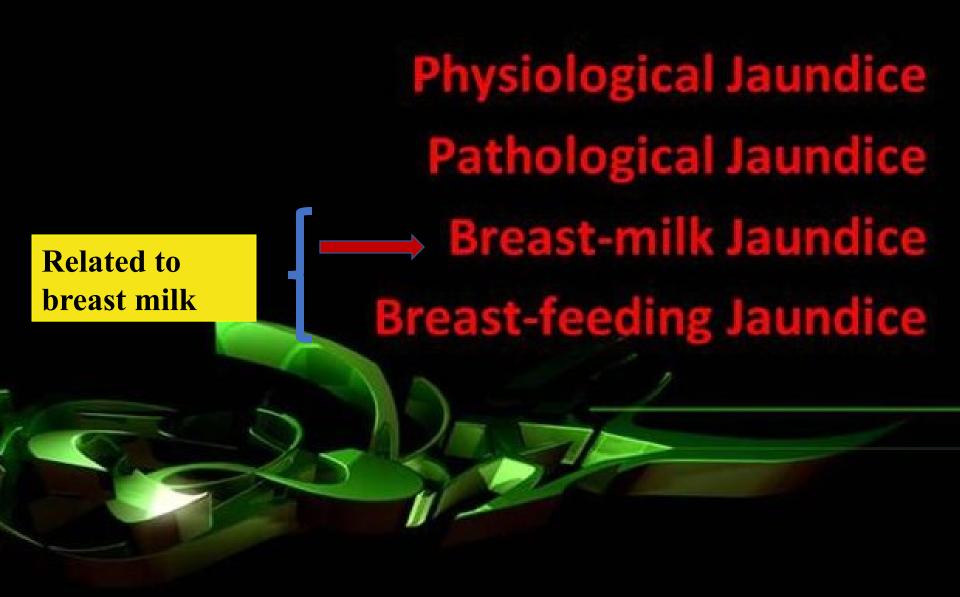
 when there is a risk factors as; breast feeding, male sex, cephal hematoma, cutanouse bruising, polycythemia, weigh loss, dehydration, caloric deprivation, delay bowel movement, maternal DM, drug (K3, novobiocin oxytocin), trisomy


**09/19/2025** 52

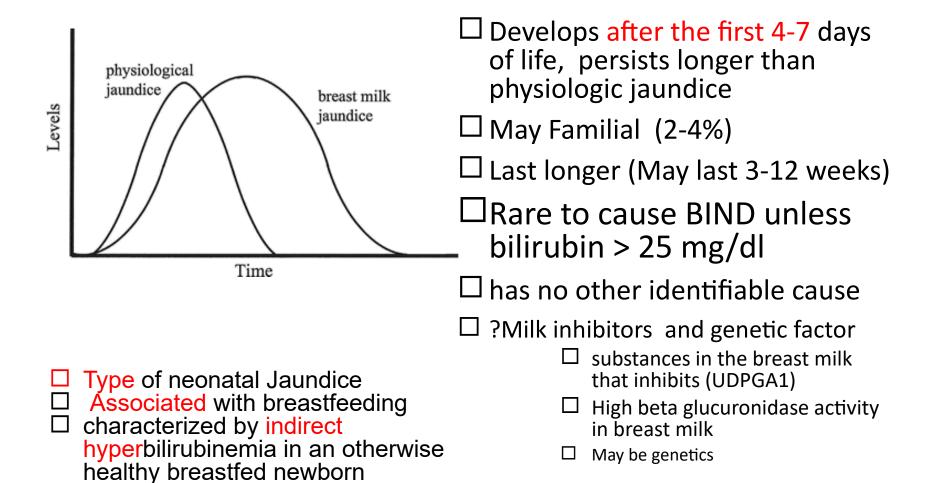
## Why Breastfeeding can cause exagerated Physiologic Jaundice

Can exagerate the peak of physiologic Jaundice

Throgh Breast feeding Jaundice (BFJ)


## **Types of Neonatal Jaundice**

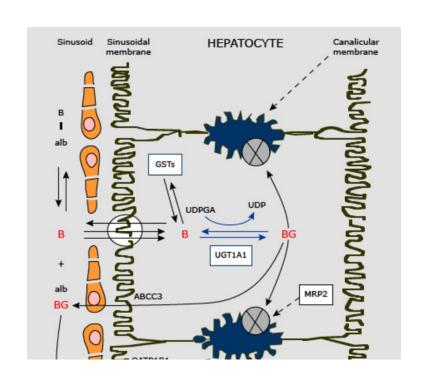



## What is Breast feeding Jaundice (BFJ)?

- Elevated unconjugated bilirubin
  - (can exaggerate Physiologic Jaundice)
- There is mild dehydration and weight loss + low caloric intake
  - Weight loss more than 8% of birth weight (day 3-4)
  - May associated with increase serum Na level and Dehydration fever fever
- It is. The Elevated bilirubin in the first few days of life
- Mandates improved/increased breastfeeding (for hydration)
  - No water or dextrose supplementation
  - Formula (OK)
  - May need phototherapy (shared decision with parents)
  - Give feed every 2-3 hours

## **Types of Neonatal Jaundice**




### Breast Milk Jaundice (BMJ)



## Prolonged Jaundice: causes Ethnic variation in conjugation ability

## Polymorphisms in the UGT1A1 gene

- -Due to differences in the number of thymine-adenine (TA) repeats in the promoter region of the gene
- vary among individuals of Asian, African, and Caucasian ancestry
- These polymorphisms correlate with decreases in UGT1A1 enzyme activity resulting in increased total bilirubin levels.



## Prolonged jaundice

#### **Causes of Prolonged Jaundice**

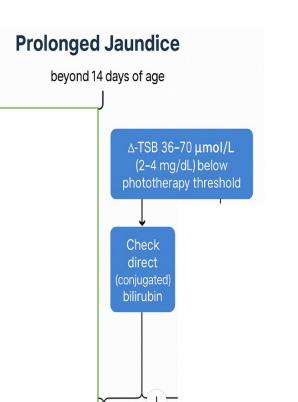
- Unconjugated hyperbilirubinemia causes (indirect fraction):
  - Hemolytic disease (e.g., G6PD deficiency, ABO/Rh incompatibility).
  - Congenital hypothyroidism.
  - Genetic syndromes: Crigler–Najjar, Gilbert syndrome.
- •Conjugated hyperbilirubinemia causes (direct fraction):
  - Cholestatic liver diseases (e.g., biliary atresia).
  - Metabolic/infectious causes (inborn errors of metabolism, sepsis, UTI).

Prolonged
jaundice = clinically
significant
jaundice (TSB
within 35 µmol/L [≈2
mg/dL] of the
phototherapy
threshold)
that persists beyond
14 days of life in:

Why Direct Bilirubin is Important

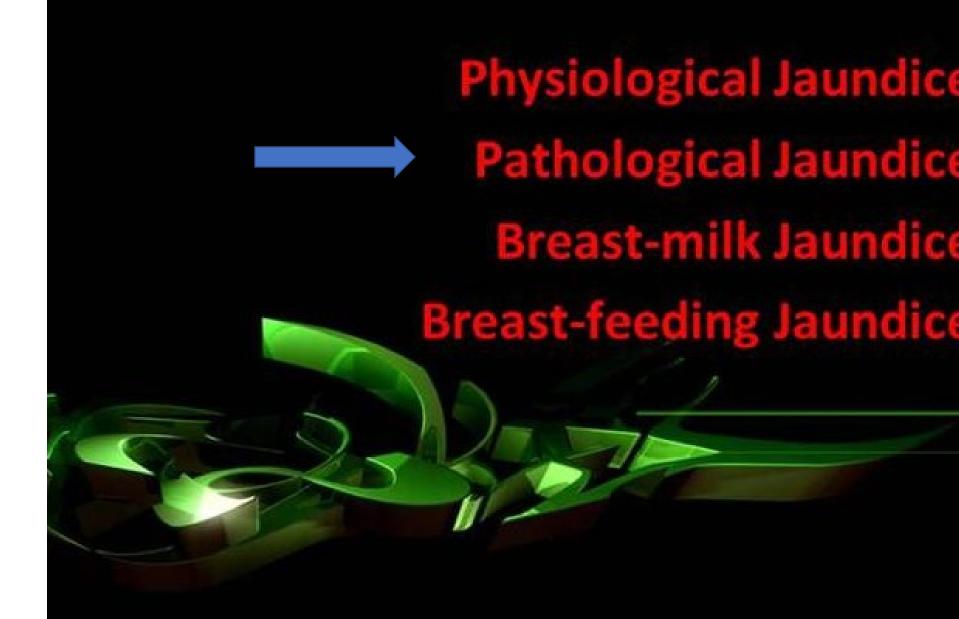
Always check direct (conjugated) bilirubin when jaundice persists >14 days.

**Abnormal result:** 


- \*Direct bilirubin >17 μmol/L (≈1 mg/dL) is considered abnormal.
- •May indicate cholestasis.

Why urgent:

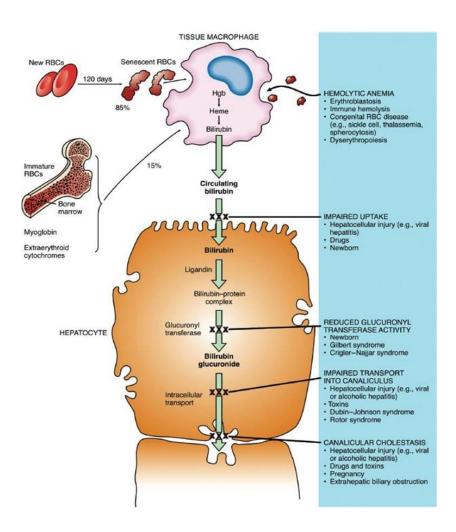
 Biliary atresia and some cholestatic diseases need early surgery/treatment for best outcomes.


09/19/2025

## Prolonged jaundice

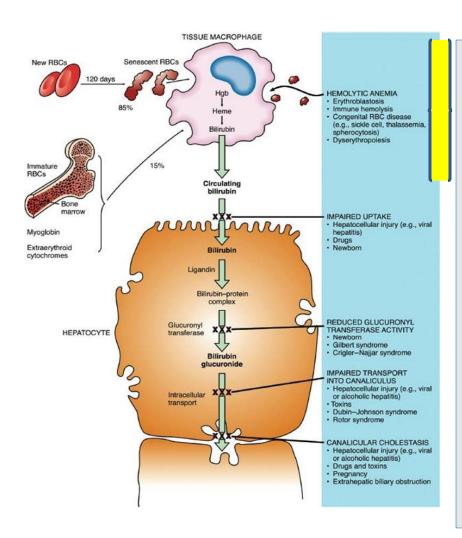


ugated) hyperbirubinemia


## **Types of Neonatal Jaundice**



## Types and Causes of neonatal Jaundice (Pathological Jaundice)


- Onset of jaundice < 24 h of birth</li>
- Rise of serum bilirubin of >0.3 mg/dL/h in the first
   24 hours or ≥0.2 mg/dL/h thereafter
- Signs of illness (e.g., lethargy, poor feeding, vomiting, apnea, tachypnea, temperature instability, excess weight loss)

### Pathologic Jaundice

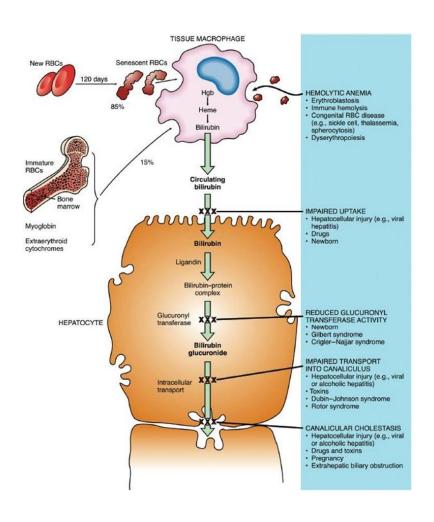


■is a medical emergency.-

### Pathologic Jaundice: Causes



#### **Increased production**


#### Hemolysis

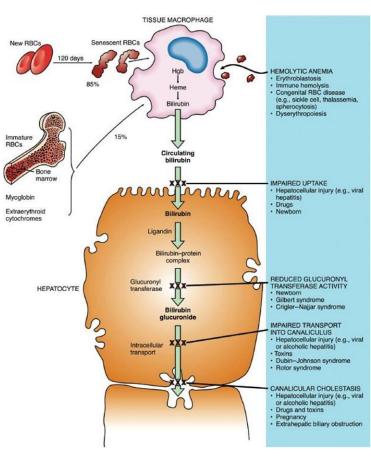
- •- Isoimmune-mediated hemolysis (eg, ABO or Rh(D) or minor blood group incompatibility
- •-Inherited red blood cell membrane defects (eg, hereditary spherocytosis and elliptocytosis-
- -- Erythrocyte enzymatic defects (eg, glucose-6phosphate dehydrogenase [G6PD] deficiency, pyruvate kinase deficiency, and congenital erythropoietic porphyria
- Viral or bacterial infections (sepsis)

#### Increased red blood cell breakdown

- -polycythemia
- - sequestration of blood within a closed space, which occurs in cephalohematoma.
- •Ineffective erythropoiesis)-
- •Inherited biochemical abnormalities as Galactosemia

## Causes of Pathologic indirect hyper bilirubinemia causing Jaundice




- Testing for G6PD
- Initial testing:
  - Do a G6PD enzyme assay in all babies with jaundice that:
    - Doesn't respond to phototherapy, OR
    - Appears without other obvious risk factors.
- Caution in acute hemolysis:
  - Test may be falsely normal because newly circulating young RBCs still have enough enzyme.
- If suspicion remains:
  - Repeat testing at 3 months of age, when RBC population has stabilized.

### Examples Of increased production

### ABO Incompatibility

- Early onset jaundice within 24 hour after birth
- Baby blood group A or B, Mother blood group O
- Direct Coomb's test +ve
- Blood smear show increase spherocytes
- Usually can be controlled with phototherapy

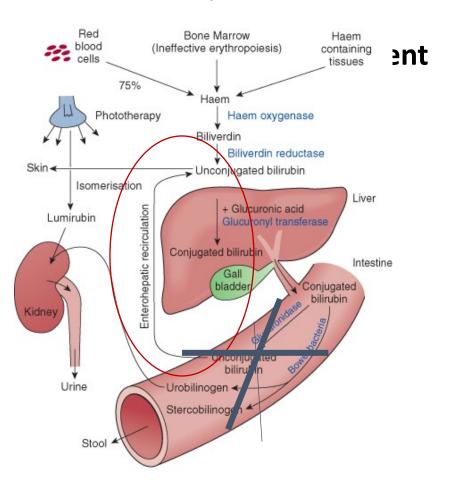
### Pathologic Jaundice Causes



#### **Decreased clearance**

#### And excretion

#### **Inherited**


- Galactosemia
- **Defects** in the gene that encodes UGT1A1
  - Crigler-Najjar syndrome types I and II
  - Gilbert syndrome,l.
    - OATP-2 polymorphism

#### Other causes —

congenital hypothyroidism

GI/Liver diseases (including metabolic liver disease)

## Pathologic Jaundice Causes: increase in enterohepatic circulation (EHC)



-NPO

-Obstruction

#### Causes of unconjugated hyperbilirubinemia in neonates4-6

| Increased bilirubin production                                                                                                                                                | Increased enterohepatic circulation                                                    | Decreased clearance of unconjugated bilirubin | Metabolic conditions           | Inborn errors<br>of metabolism                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hemolysis (immune-mediated, heritable)  Extravasation (cephalohematoma)  Polycythemia  Sepsis  Disseminated intravascular coagulation  Macrosomic infants of diabetic mothers | Insufficient breast milk/<br>feeding<br>Pyloric stenosis<br>Bowel obstruction<br>Ileus | Prematurity G6PD deficiency                   | Hypothyroidism Hypopituitarism | Galactosemia Gilbert syndrome Crigler-Najjar syndrome (I and II) Breast milk jaundice due to other bilirubin UGT1A1 mutations Tyrosinemia Hypermethioninemia |

G6PD, glucose-6-phosphate dehydrogenase; UGT1A1, uridine diphosphate-glucuronosyltransferase, family 1, polypeptide A1.

### Pathologic jaundice:

How to recognize



#### Suspicion 1:

#### Cord blood TSB at 24 hour

### Pathologic jaundice: How to recognize

Table-3: Mean± standard deviation of cord blood and 1st day TSB levels

|                                        | Cases developed significant<br>hyperbilirubinemia | Cases did not develop significant<br>hyperbilirubinemia | P value |
|----------------------------------------|---------------------------------------------------|---------------------------------------------------------|---------|
| Cord bilirubin<br>mg/dL                | 2.68± 1.2                                         | 1.24±0.38                                               | <0.01   |
| 1 <sup>st</sup> day bilirubin<br>mg/dL | 6.41±1.8                                          | 3.2±1.32                                                | <0.01   |

P value <0.01is highly significant

Cord blood bilirubin level of >2.38 mg/dL cut off value is achieved by ROC curve analysis (figure 1) with sensitivity (83.3%), specificity (88.8%), positive predictive value (58.1%) and negative predictive value (96.6%) are shown in table 4, also the cut off point of first day bilirubin >5 mg/dL shows sensitivity (91.1%), specificity (79.8%), positive predictive value (46.3%) and the negative predictive value was (97.7%).

Figure-1: ROC curve for cut off value of the cord blood bilirubin for prediction of significant hyperbilirubinemia



Table-4: Sensitivity, specificity, positive predictive value and negative predictivevalues of cord and 1st day bilirubin

Jaundice in 1<sup>st</sup> 24 hrs

High sensitivity and specificity to develop sever hyperbilirubimimeia if

ord total bilirubin > 2.38mg\dl tal Serum bili level at 24 hor of > 5 mg\dl

levels for prediction of hyperbilirubinemia

## Suspicion 2: Pattern of rise

## Pathologic Jaundice: How to recognize

### Pattern of rise

- Rapidly rising TSB (> 5 mg/dL per day)
  - > Hemolysis: rapid rate of increase in the TSB of >0.3 mg/dL per hour in the first 24 hour
  - or >0.2 mg/dL per hour thereafter

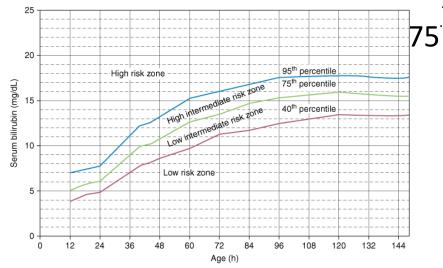



Table 3. Risk of Developing a Total Serum Bilirubin (TSB) Level of 20 mg/dL (342  $\mu$ mol/L) or Higher by TSB Percentile Group

| TSB Percentile at <48 h | No. of<br>Patients | No. (%) of<br>Patients With a TSB<br>of ≥20 mg/dL |
|-------------------------|--------------------|---------------------------------------------------|
| <40th                   | 994                | 5 (0.50)                                          |
| 40-74.9                 | 1508               | 11 (0.73)                                         |
| 75-94.9                 | 1780               | 58 (3.26)                                         |
| ≥95th                   | 1424               | 196 (13.76)                                       |
| Total                   | 5706               | <b>270</b> (4.73)                                 |

Source: Stevenson DK, Maisels MJ, Watchko JF: Care of the Jaundiced Neonate: www.accesspediatrics.com

Suspicion 3: **COAURSE** 

Pathologic Jaundice: How to recognize

 Jaundice in a term newborn after two weeks of age.

09/19/2025

Suspicion 4: **Type** 

## Pathologic Jaundice: How to recognize

 Direct (conjugated) bilirubin concentration

### Definition of direct bilirubin

Direct bilirubin > 1 mg/

09/19/2025

## Objectives

Why this lecture

Bilirubin metabolism

What special in neonates

**Types and Causes of neonatal Jaundice** 

Breast feeding and hydration

### How to asses of neonate at risk of sever hyperbilirubinemia?

Management

Guidelines

Work UP

**Treatment** 

Prevention

treatment

### How to assess of neonate at risk of sever hyperbilirubinemia ?

My Baby
Is he at risk to develop sever
Hyperbilirubinemia: ???





# Monitoring

During their

After Birth

All newborns should be routinely assessed for jaundice.

Vital signs monitoring Jaundice is visible when Sr. Bilirubin >5mg/dl.

Newborns to be observed for 72 hrs for jaundice appearance. In case of discharge before 48hrs, Bilirubin risk factors and Hyperbilirubinemia risk as per Normograms should be assessed and followup to be advised accordingly. Or Use Calculate Δ-TSB rule

# 1-Use screening for hyperbilinubinemia AAP AND CPS guidelines March 2025

- Test screen for
  - Maternal blood group (ABO and Rh) and
  - red cell
     antibody as
     part of
     routine
     prenatal
     care.

- If the maternal antibody screen is positive or unknown at time of delivery, newborn testing should include all:
  - Atotal serum bilirubin (TSB),
  - Hemoglobin, reticulocyte count, blood smear
  - Direct antiglobulin test (DAT), and blood group
  - preferably obtained from cord blood.
  - Monitor these neonates closely for the development of early (<24 hours postnatal age) hyperbilirubinemia.

## 2- Always do Risk factor developing significant hyperbilirubinemia

Infants with risk factors for hyperbilirubinemia require closer monitoring than infants without risk factors.

- o Lower gestational age
- o Jaundice in the first 24 h after birth
- o Predischarge transcutaneous bilirubin (TcB) or total serum bilirubin (TSB) concentration close to the phototherapy threshold o Hemolysis from any cause, if known or suspected based on a rapid rate of increase in the TSB or TcB of >0.3 mg/dL per hour

in the first 24 h or >0.2 mg/dL per hour thereafter.

- o Phototherapy before discharge
- o Parent or sibling requiring phototherapy or exchange transfusion
- o Family history or genetic ancestry suggestive of inherited red blood cell disorders, including glucose-6-phosphate

phototherapy and the level at which

care should be escalated.

The presence of these risk factors lower the threshold for treatment with

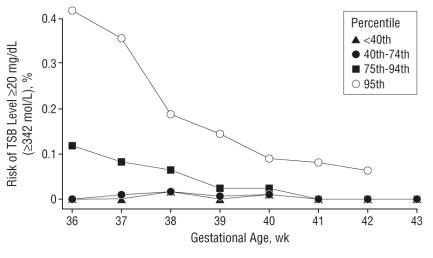
Patients at high risk for developing hyperbilirubinemia neurotoxicity have the risk factors below.

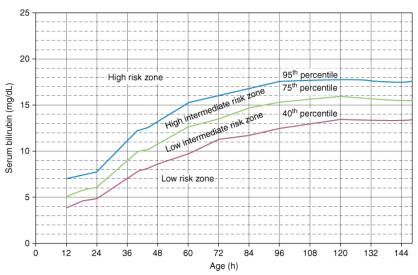
o Gestational age <38 wk and this risk increases with the degree of prematurity

o Albumin <3.0 g/dL

o Isoimmune hemolytic disease (i.e., positive direct antiglobulin test), G6PD deficiency, or other hemolytic conditions o Sepsis

o Significant clinical instability in the previous 24 h


dehydrogenase (G6PD) deficiency

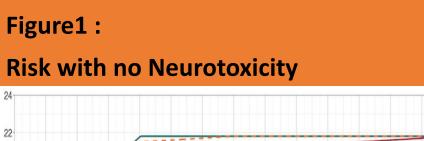

- o Exclusive breastfeeding with suboptimal intake o Scalp hematoma or significant bruising
- o Down syndrome
- o Macrosomic infant of a diabetic mother

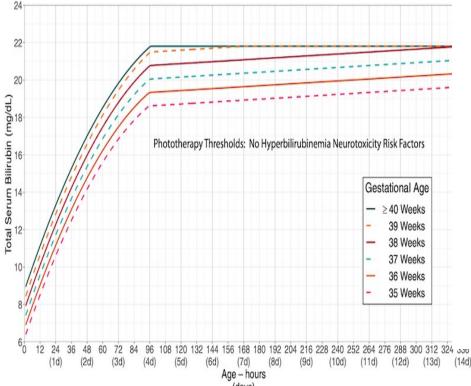
### 2-Assess the Gestation Age

## Risk of Jaundice By gestation age (GA)

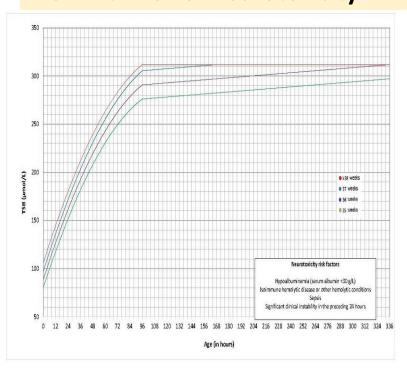
### Clinical risk factor







Source: Stevenson DK, Maisels MJ, Watchko JF: Care of the Jaundiced Neonate

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.


Increase risk of sever hyper bilirubinemia risk with decrease GA Study on those >36 weeks

## 3- know phototherapy figures





# Figure 2 : Risk with risk of neurotoxicity



Intensive phototherapy is recommended at the total serum bilirubin phototherapy threshold on the basis of gestational age, hyperbilirubinemia neurotoxicity risk factors, and age of the infant in hours.

Step 4.

## **A- Measure Before Discharge**

**Every baby should have TSB or TcB** measured ≥12 h of life.

**B-**Step 2. Calculate  $\Delta$ -TSB

# Step 4. Cont-Do Timed TSB measurement to determine the △TSB

△TSB = = Treatment threshold – Measured bilirubin.

### **Timed TSB:**

Measure a pre-discharge total serum bilirubin (TSB) or transcutaneous bilirubin (TcB) in all newborns at a > of 12 hours post-birth

-check phototherapy level

# $\Delta$ -TSB (mg/dL + $\mu$ mol/L) with Risk Factors Included

| Δ-TSB (μmol/L) | Δ-TSB (mg/dL) | What it means                                           | What to do                                                                                                             |
|----------------|---------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ≤30 μmol/L     | ≤1.8 mg/dL    | Baby is <b>very close to treatment line</b> → high risk | Urgent action: start phototherapy OR recheck in 6–12 h. Keep in hospital if risk factors present.                      |
| 31–60 μmol/L   | 1.9–3.5 mg/dL | Baby may reach treatment line soon                      | Early follow-up: recheck in 12–24 h. If risk factors (prematurity, hemolysis, poor feeding, sepsis) → consider sooner. |
| 61–100 μmol/L  | 3.6–5.9 mg/dL | Baby below threshold but still needs watching           | <b>Recheck in 1–2 days</b> . If risk factors → shorten interval.                                                       |
| >100 μmol/L    | >6 mg/dL      | Baby well below treatment threshold                     | Routine follow-up in 2–3 days. If risk factors present → follow-up earlier.                                            |



## Use rule of 30

Example

Baby 24 h old

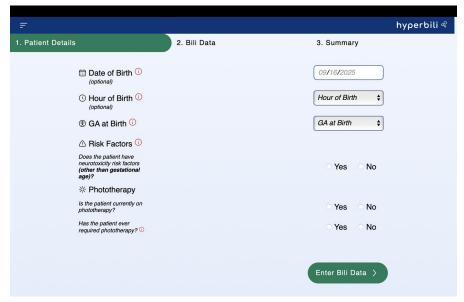
37 wks GA

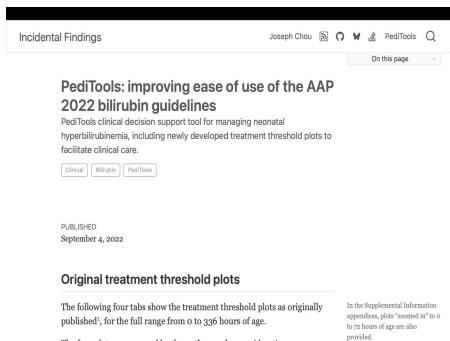
## Example. <a href="https://hyperbili.com">https://hyperbili.com</a>

- Baby: 37 weeks GA, no risk factors, 48 hours old.
- Phototherapy threshold at this age  $\approx$  250  $\mu$ mol/L (14.6 mg/dL).
- If measured TSB = 245  $\mu$ mol/L (14.3 mg/dL):
  - $\Delta$ -TSB = 5  $\mu$ mol/L (0.3 mg/dL)  $\rightarrow$  at/near threshold. Start intensive phototherapy immediately.
- Baby: 37 weeks GA, with sepsis (risk factor), 48 hours old.
- Threshold is lower  $\approx$  220  $\mu$ mol/L (12.9 mg/dL).
- If measured TSB = 200  $\mu$ mol/L (11.7 mg/dL):
  - $\Delta$ -TSB = 20  $\mu$ mol/L (1.2 mg/dL) below threshold.
  - Because of Rule of 30 #2, you may start phototherapy early.

## Step 5

- Communicate Clearly to Families
- Always give parents written + verbal info in their first language:
  - Baby's bilirubin level(s)
  - Age at testing
  - Calculated Δ-TSB
  - Next steps (e.g., "Come back tomorrow at 10 a.m. for a repeat test")
- Teach them warning signs: jaundice in first 24 h, poor feeding, excessive sleepiness, dark urine, pale stools.


## Step 6


- Step 5. Support Breastfeeding
- Breastfed babies have a slightly higher risk of jaundice, but breastfeeding is strongly beneficial.
- Support measures:
  - Early skin-to-skin
  - Frequent feeding (8–12 times/day)
  - Monitor weight, urine, stool output
  - Arrange community resources (lactation clinics, hotlines)
- Recommendation: Every family should have access to breastfeeding support until feeding is well established.

### You can use Mobile Application

### Canadian

https://hyperbili.com



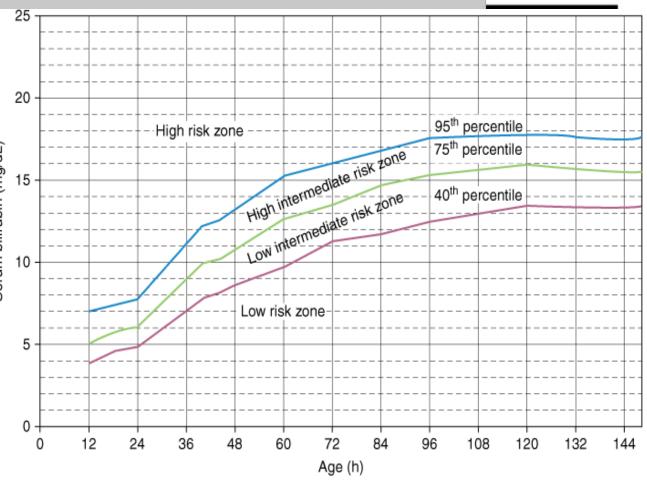


### You can use Mobile Application AAP 2022

https://peditools.org/bili2022/ Joseph Chou 🔊 🗘 😾 Incidental Findings PediTools Q On this page PediTools What's new About PediTools Contact us Sitemap iOS Fenton 2013 PediTools: improving ease of use of the AAP 2022 bilirubin quidelines PediTools clinical decision support tool for managing neonatal hyperbilirubinemia, including newly developed treatment threshold plots to **AAP 2022** facilitate clinical care. Hyperbilirubinemia

PediTools Clinical tools for pediatric providers Age and Bilirubin Management Clinical Bilirubin PediTools Guidelines Gestation at birth (35 to 40+ weeks) Calculator and clinical decision 1 to 336 hours) Age (hours) support for the AAP 2022 guidelines for the management of Bilirubin (mg/dL) (optional) **PUBLISHED** hyperbilirubinemia in newborns 35 or Neurotoxicity risks No risk factors September 4, 2022 more weeks of gestation. (required) ANY risk factors Show both **Features** Plot scale Automatic Original treatment threshold plots Neurotoxicity risk factors Full-sized PediTools custom absent, present, or both Plot choice In the Supplemental Information The following four tabs show the treatment threshold plots as originally • Plot multiple time points to Original publication appendices, plots "zoomed in" to o published1, for the full range from 0 to 336 hours of age. assess trends Submit Reset form to 72 hours of age are also • Original and easier to interpret provided. · Zoomed in and full 0-336 hour Optional age calculator Date of birth 09/16/2025, 12:30 PM Phototherapy discontinuation decision support Date of measurement 09/16/2025, 12:30 PM

## 1-Assess the risk Zone: A predictive nomogram AAP 2022


ogram

for those > 35 weeks

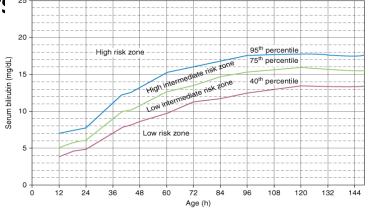
Normogram for designation of Hyperbilirubinemia risk based on hour specific bilirubin values.

Adapted from bhutani et al.

Adapted from bhutani et al.



Source: Stevenson DK, Maisels MJ, Watchko JF: Care of the Jaundiced Neonate: www.accesspediatrics.com


Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

## At Discharge

- Assess risk
  - 1.. Do Predischarge bilirubin (serum or transcutaneous)
    - Use nomogram to determine risk zone
  - 2. And/or Assessment of risk factors

Table 3. Risk of Developing a Total Serum Bilirubin (TSB) Level of 20 mg/dL (342 µmol/L) or Higher by TSB Percentile Group

| TSB Percentile<br>at <48 h | No. of<br>Patients | No. (%) of<br>Patients With a TSB<br>of ≥20 mg/dL |
|----------------------------|--------------------|---------------------------------------------------|
| <40th                      | 994                | 5 (0.50)                                          |
| 40-74.9                    | 1508               | 11 (0.73)                                         |
| 75-94.9                    | 1780               | 58 (3.26)                                         |
| ≥95th                      | 1424               | 196 (13.76)                                       |
| Total                      | 5706               | <b>270</b> (4.73)                                 |



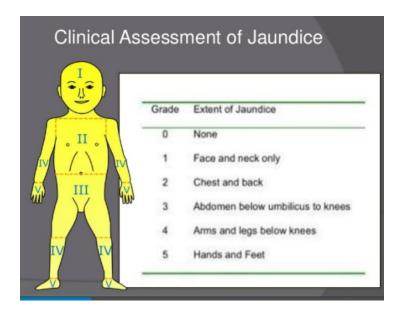
Source: Stevenson DK, Maisels MJ, Watchko JF: Care of the Jaundiced Neonate www.accesspediatrics.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved

Why to know risk factors potentially correctable causes:
<a href="Mailto:Kernicterus cases">Kernicterus cases</a> — <a href="Pediatrics Journal">Pediatrics Journal</a>

- Failure to check bilirubin level if onset in first 24 hours
- Early discharge (<48hrs) without f/u within 48 hrs
- Visual assessment underestimate of severity
- Delay in testing jaundiced newborns or treating elevated levels
- Lack of concern for presence of jaundice or parental concern
- Failure to note risk factors

## Post-discharge follow-up


Infants discharged before 48 hours of life should be seen within 2 days of discharge.

Those infants with significant risk factors for development of severe hyperbilirubinemia should be seen within 1 day.

# Assessment of hyperbilirubinemia by visual assessment

Unreliable

 Testing bilirubin level is more correct



## Objectives

Why this lecture

Bilirubin metabolism

What special in neonates

**Types and Causes of neonatal Jaundice** 

Breast feeding and hydration

Assessment of neonate at risk of sever hyperbilirubinemia

### <u>Aproach</u>

Management

Guidelines

Work UP

Treatment

Prevention

treatment

## Objectives

### Why this lecture

Bilirubin metabolism

What special in neonates

Types and Causes of neonatal Jaundice

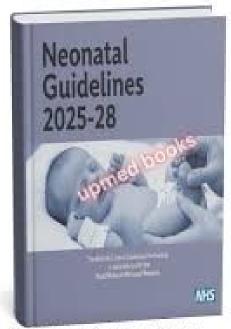
Breast feeding and hydration

Assessment of neonate at risk of sever hyperbilirubinemia

### Management

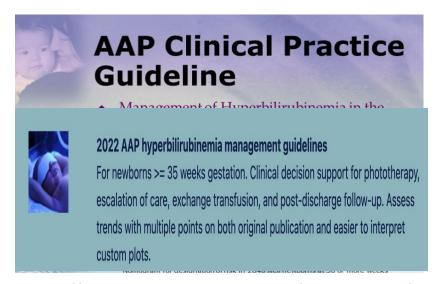
Guidelines

Work UP


### **Treatment**

Prevention treatment

# How to manage if baby is Jaundice


## <u>Use A guidelin</u>e

### NICE guidelines (UK)



Neonatal Guidelines - CB - 463

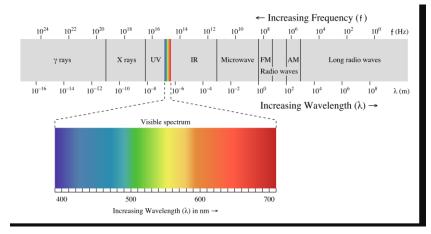




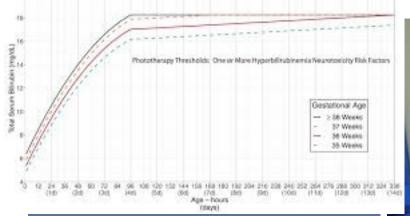
https://publications.aap.org/pediatrics/article/150/3/e2022058865/188725/Technical-Report-Diagnosis-and-Management-of?autologincheck=redirected

## **Therapeutic Options**

Phototherapy for neonate
 with mild jaundice




 Exchange transfusion in Severe cases

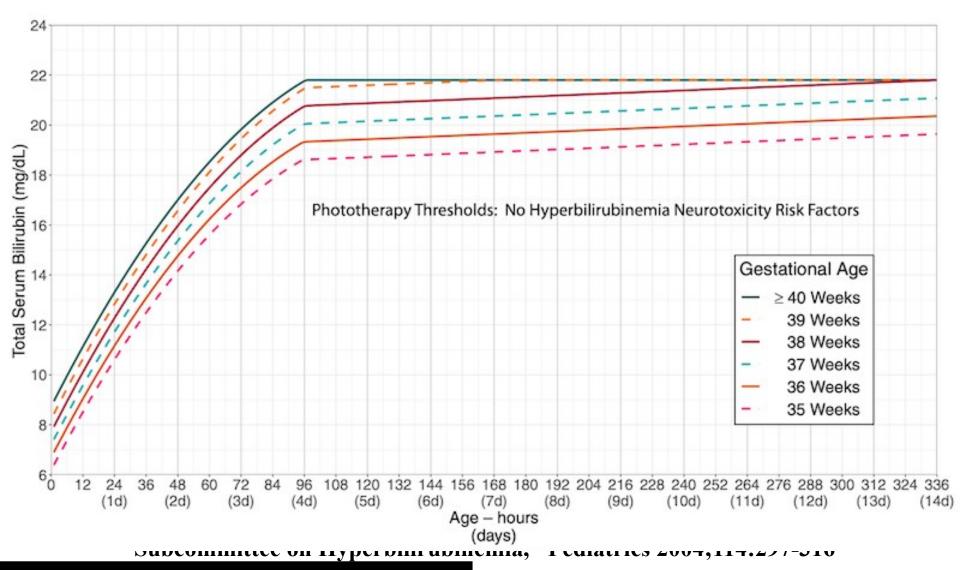



Intravenous Immune globulin

09/19/2025



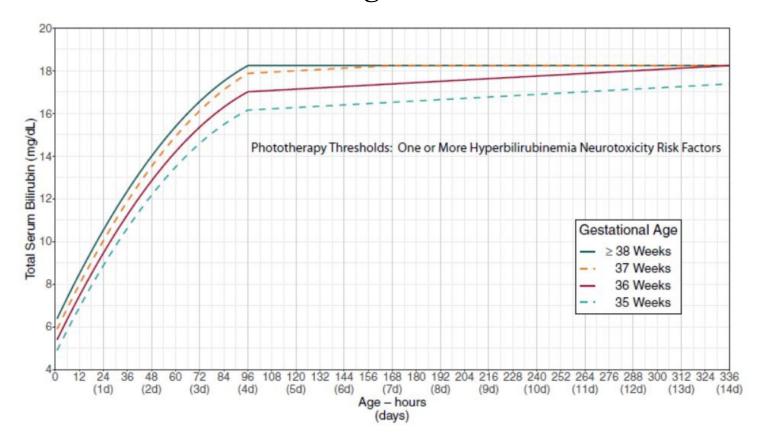
### Bilirubin chart




## Phototherapy

- Goal: to treating neonatal hyperbilirubinemia and prevent related neurotoxicity
- Decreases the need for exchange transfusion
- Exposure of the skin of the jaundiced baby to blue or cool white light of wavelength 425-475 nm
- Toxic bilirubin molecule isomerizes to non-toxic product




# Guidelines for Phototherapy in infants of 35 or more weeks' gestation



Who need photo therapy?



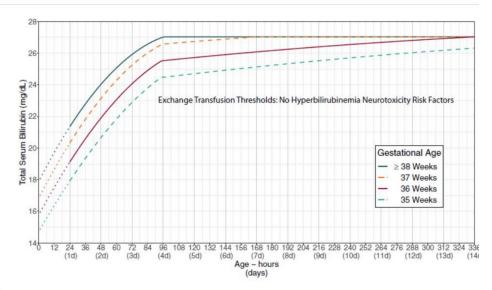
# Guidelines for Phototherapy in infants of 35 or more weeks' gestation



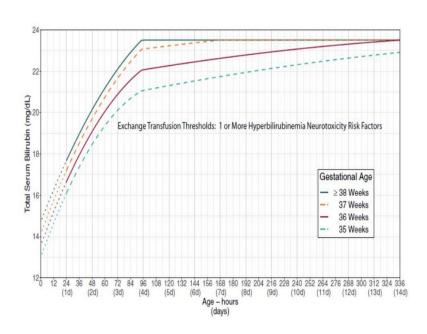
Subcommittee on Hyperbilirubinemia, Paediatrics 2022

Who need photo therapy?




### **Adverse Effects of Phototherapy**

- Phototherapy is safe and lifesaving, but studies have suggested possible long-term associations with:
  - Asthma
  - Allergies
  - Blood cancers
  - Epilepsy
- Important: Evidence is weak and confounded.
- Clinical message: Benefits outweigh risks —
  use phototherapy whenever threshold is reached.


## Exchange photo therapy

### No risk factor

### Guidelines for Exchange Transfusion in Infants 35 or more Weeks Gestation<sup>(19)</sup>



### With neurotoxicity risk factor



# Follow up Recommendations

# FOLLOW-UP AFTER HYPERBILIRUBINEIMIA



### **Anemia**



Ensure hemoglobin level is tested between 4 and 10 weeks of age for infants with hemolytic disease.



### **Hearing**



Refer to audiology if:

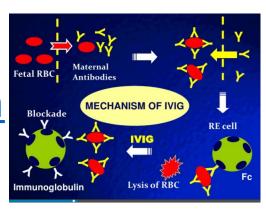
- Peak TSB≥400 μmol/L (23.4 mg/dL)
- Pre-exchange transfusion threshold reached or exceeded
- BET performed



### Neurodevelopment



Refer for long-term follow-up if:


- Pre-exchange transfusion threshold reached or exceeded (with or without BET)
- Abnormal neurological signs

## Exchanges transfusion: indication

- bilirubin levels >25 mg/dL,
- those who are not responding to phototherapy
- those with evidence of acute bilirubin encephalopathy

09/19/2025

## Intravenous <u>immune globulin</u>



- Dose
  - (IVIG; dose 0.5 to 1 g/kg over two hours)
  - The dose may be repeated in 12 hours if necessary
- is recommended in
  - infants with isoimmune hemolytic disease and if the TSB level is rising despite phototherapy
  - or is within 2 or 3 mg/dL of the threshold for exchange transfusion.

09/19/2025

• Thank you

# Neonata Jaundice

Eman Badran
Professor of Pediatrics

Fifth year medical students

# Ophthalmologic Problem In neonates



Case based study

Eman F. Badran
Professor of Pediatrics
University of Jordan
School of Medicine
Pediatric Department
Neonatal Division



## Learning Objectives

Recognize manifestation of common ophthalmologic problems


 Understand the emergency Neonatal Ophthalmologic problems

- Understand management of common Neonatal Ophthalmologic problems
- Identify the needed work up for Neonatal Ophthalmologic problems

# 1-Watery eyes



2- Squint



### 3-Abnormal red reflex





Urgent

Source: Lueder GT: Pediatric Practice Ophthalmology: www.accesspediatrics.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

# 1- Watery eyes



# CASE 1 Common scenario

- 37 week gestation
- Male
- Mother is primigravida's
- At 2 weeks of age Visit
  - the infant came to the clinic with history excessive lacrimation (tearing) with mucoid discharge from the eyes or eye

https://www.medscape.com/viewarticle/902470

# What Is the next step

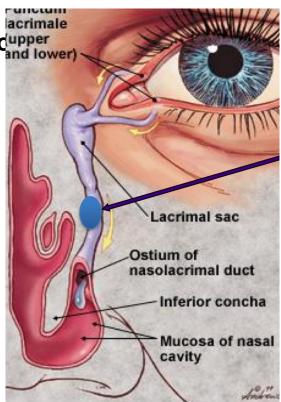
#### **History**

- Duration: 1 wk
- Type of discharge: <sub>Mucoid</sub>
- Uni/Bilateral: Unilateral
- Eye redness: NO
- Course: Constant

#### Exam

- Cornea: Negative and clear
- Extra ocular movement: Negative
- Conjunctiva: Negative
- Scleral : Negative
- Pupil: round and reactive
- General exam Normal

#### Case 1


What is Diagnosis



The parents would like to ask why is this produpper and lower

The pathogenesis of CNLDO:

- lies in a mechanical obstruction located distally in the nasolacrimal duct (NLD) at the valve of Hasner, where this structure enters the nose



# The parents Ask you is this common

Occurs in 20% of cases of infants



### Congenital Naso-lacrimal duct obstruction

Affect approximately 20% in the first year of life

- Almost 95% of affected showed symptoms at one month of age
- Higher prevalence of CNLDO reported in premature infants
  - Developmental process

### Parents were concerned

• How to treat?

## Management

- simple observation
- Clean eye
- massage of the lacrimal sac (Crigler)
  - 10 massage s each time 3 times /day
- Application of topical antibiotics when a bacterial superinfection occurs

# Parents Ask you

- What will happen
- When it will resolve

Mostly resolve by one year (90% resolve)

• No improvement: Propping

# Family asked

• Do we need to go to Ophthalmologist

### Exclude Other Differential diagnosis

- PRIMARY CONGENITAL GLUCOMA (PGG)
- Foreign body
- Corneal infections

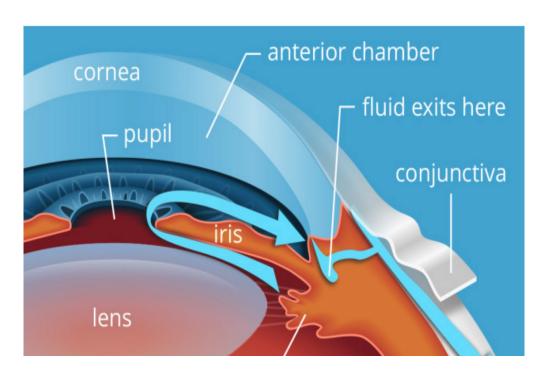
- If you are not sure
  - Pediatric Ophthalmology consult

## Case 1 Reference

# Congenital Nasolacrimal Duct Obstruction (CNLDO): A Review

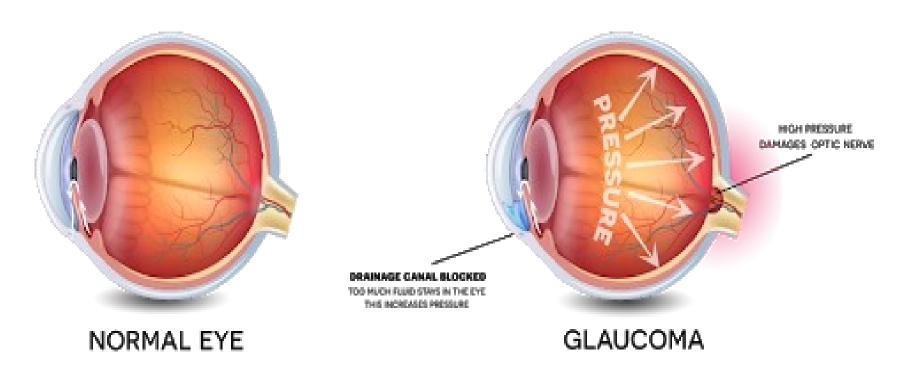
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313586/pdf/diseases-06-00096.pdf

Nasolacrimal Duct Obstruction: The Right Way to Teach Parents <a href="https://www.medscape.com/viewarticle/902470">https://www.medscape.com/viewarticle/902470</a>


### PRIMARY CONGENITAL GLAUCOMAS (PGG)

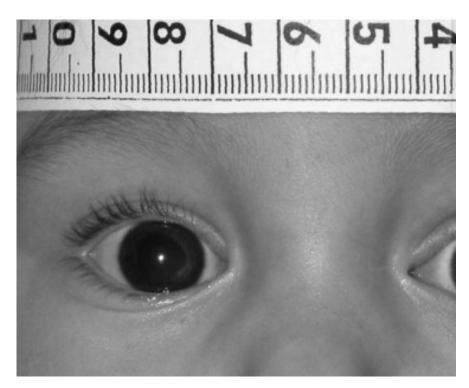
Due to **defect** in the developmental of the trabecular meshwork and anterior chamber angle

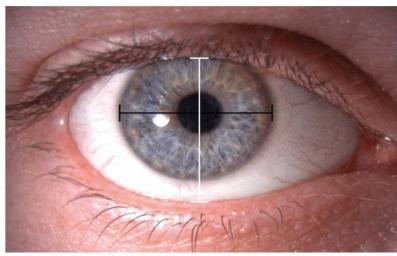
that prevent adequate drainage of aqueous humor,


resulting in elevated intraocular pressure (IOP)

stretching of the sclera that produces an enlarged globe (buphthalmos).




https://www.kceyeclinic.com/our-services/glaucoma/types-of-glaucoma/


### **GLAUCOMA**



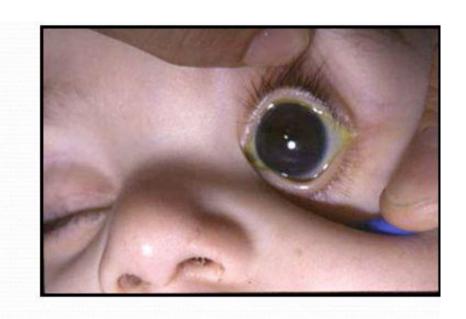
#### Symptoms of congenital glaucoma

#### normal horizontal corneal diameter is 10.5 mm





#### Symptoms of congenital glaucoma


measurements greater than 12 mm are highly indicative of glaucoma.



Top emergency: need surgery
Can neve some damage as Optic nerve

#### symptoms of congenital glaucoma

- Tearing (Watery )
- Light sensitivity



# Symptoms of congenital glaucoma

- Cloudiness of the cornea due:
  - Edema with opacification of the cornea.
- Enlargement of the eye globe (buphthalmos)
  - (STRECHING OF CORENEA)
- Photophobia
- Blepharospasm,
- Usually Bilateral > Unilateral
- Occur in 1:10,000



#### RISK FACTOR

#### Family history of congenital glaucoma

Genetic consult do: exome sequencing and genome sequencing pathogenic variant(s)

#### CAN BE:

Autosomal recessive inheritance:

Autosomal dominant inheritance:

Prenatal diagnosis for pregnancies at increased risk is possible if the PCG-causing pathogenic variant(s) in the family are known.

Risk factors for Congenital Glucoma Sturge-Weber syndrome facial port-wine stain involving the **upper** and **lower** eyelids





#### Risk factors

• congenital <u>rubella</u> (rare)

# DDX: of PRIMARY CONGENITAL GLAUCOMAS (PGG)

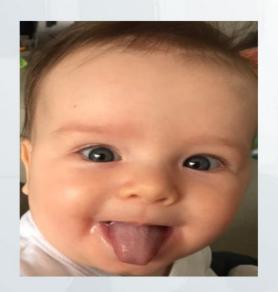
- Infantile CG (may present in neonatal period
  - Have another causes as part of syndromes and trisomy's
  - Important to be defeminated for genetic counseling

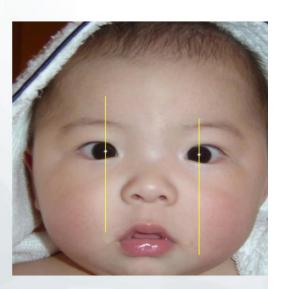
# **Squint**



#### Case 2

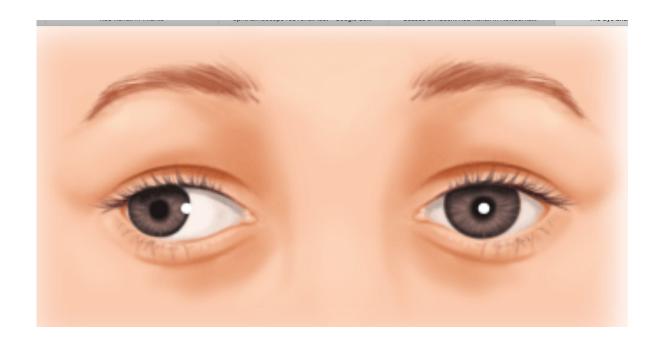
- During 2 weeks Neonatal visit
- Parents noticed that their baby has squint
  - They said it is (intermittent side ways)
- His history and Physical exam is unremarkable
- He was healthy
- Red reflex were normal and symmetrical corneal reflex


#### Strabismus - "squint that goes away"


#### **Transient neonatal strabismus**

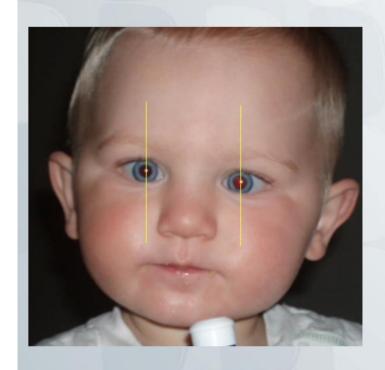
#### **Pseudo-strabismus: Optical Illusion**

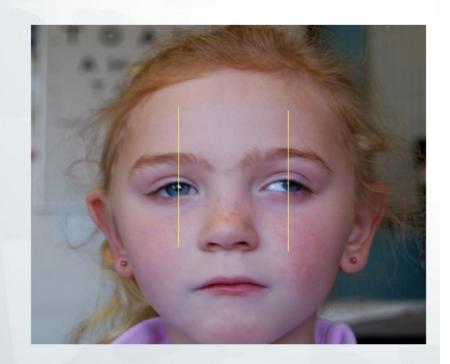



- NORMAL ocular alignment
- intermittent
- Resolves by 2-4 months<sup>1,2</sup>



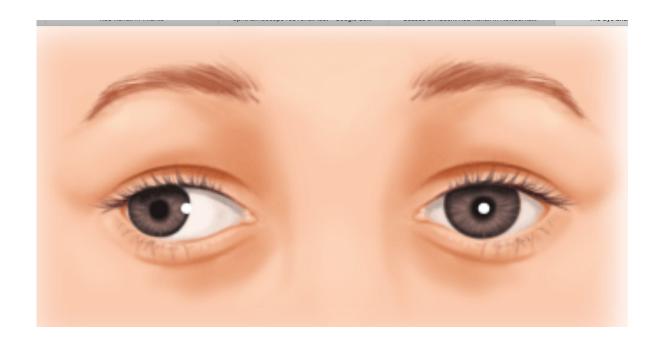



- Wide nasal fold/bridge of nose
- Intermittent looking sideways
- · "see both ears"
- Corneal light reflex symmetry


Horwood A. 1993, JAAPOS; <sup>2</sup>Sondhi N. et al. 1988 JAAPOS



Asymmetrical pupillary reflex


### True strabismus – variable direction, size and frequency





#### Consider:

- ➤ CAUSE? secondary cause until proven otherwise
- > EFFECT ON VISION DEVELOPMENT AMBLYOPIA



Asymmetrical pupillary reflex

# At what time you screen the baby for red reflex

Why IT is important

#### Red reflex

Should be done before newborn discharge





#### **Good Red Reflex**

- Bright red
- Symmetric
- How to acquire the reflex?
  - Dim room
  - · Direct ophthalmoscope
  - Simultaneous viewing of both eyes at arm's length

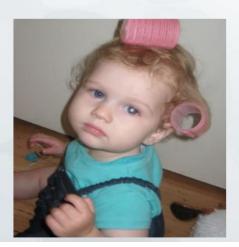





Red reflex should be equal in both eyes

Use direct ophthalmoscope from 2 to 3 ft away from the patient in a darkened room. The infant will usually be interested in the light and look directly toward it.

## Interruption of Abnormal red reflex




## Leukocoria

Strabismus may be early signs

"Leuko" – white "Coria" – pupil





## "Isn't it just the camera flash?"





estimate is 1 case of retinoblastoma per 18,000-30,000 live births,

## Congenital cataract



Urgent

### Congenital Cataract

- Occur in about 3:10000 live birth.
- 2/3 of case are bilateral (half of the cause can be identified)
- The most common cause is genetic mutation usually AD
- It can cause ambylopia in infants.
- It is divided to:
  - 1. Systemic association
  - 2. Non-systemic association

#### Systemic association

#### 1. Metabolic:

• Galactosaemia, galactokinase deficiency, Lowe syndrome, others (hypoparathyroidism, pseudohypoparathyroidism, mannosidosis)

#### 2. Prenatal infection:

• Congenital rubella (~15% of cases), other intrauterine infection (toxoplasmosis, cytoegalovirus, herpes simplex varicella)

#### 3. Chromosomal Abnormalities:

- Down syndrome~5%
- Patau (trisomy 13)
- Edward (trisomy 18) syndrome.

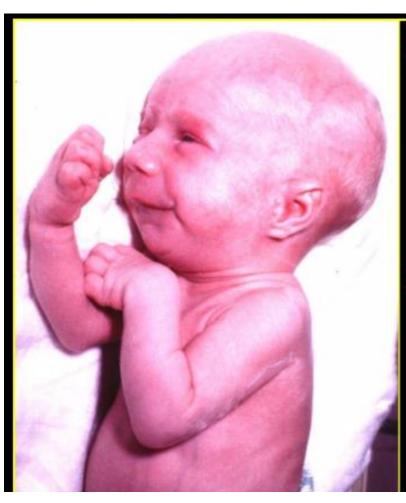
### Non-systemic association

#### 1. Isolated hereditary cataract

- ➤ About 25% of cases.
- ➤ Most frequently **AD**, but maybe **AR** or **X-linked**
- Better visual prognosis than coexisting ocular and systemic abnormalities

#### Causes of cataract in healthy neonate




#### Hereditary

(usually dominant)

Idiopathic

#### With ocular anomalies

- . PHPV
- Aniridia
- Coloboma
- Microphthalmos
- Buphthalmos



#### **Intrauterine infections**

- Rubella
- Toxoplasmosis
- Cytomegalovirus
- Varicella

#### Metabolic disorders

- Galactosaemia
- Hypoglycaemia
- Hypocalcaemia
- Lowe syndrome

## Learning Objectives for common eye problems

Recognize manifestation of common ophthalmologic problems

 Understand the emergency Neonatal Ophthalmologic problems

- Understand management of common Neonatal Ophthalmologic problems
- Identify the needed work up for Neonatal Ophthalmologic problems

